Metamath Proof Explorer


Theorem sylancb

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancb.1 ( 𝜑𝜓 )
sylancb.2 ( 𝜑𝜒 )
sylancb.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylancb ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 sylancb.1 ( 𝜑𝜓 )
2 sylancb.2 ( 𝜑𝜒 )
3 sylancb.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 1 2 3 syl2anb ( ( 𝜑𝜑 ) → 𝜃 )
5 4 anidms ( 𝜑𝜃 )