Metamath Proof Explorer
Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)
|
|
Ref |
Expression |
|
Hypotheses |
sylancb.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
sylancb.2 |
⊢ ( 𝜑 ↔ 𝜒 ) |
|
|
sylancb.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
sylancb |
⊢ ( 𝜑 → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylancb.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 2 |
|
sylancb.2 |
⊢ ( 𝜑 ↔ 𝜒 ) |
| 3 |
|
sylancb.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 4 |
1 2 3
|
syl2anb |
⊢ ( ( 𝜑 ∧ 𝜑 ) → 𝜃 ) |
| 5 |
4
|
anidms |
⊢ ( 𝜑 → 𝜃 ) |