Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syland.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
syland.2 | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
Assertion | syland | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syland.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | syland.2 | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
3 | 2 | expd | ⊢ ( 𝜑 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) |
4 | 1 3 | syld | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜏 ) ) ) |
5 | 4 | impd | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) ) |