Metamath Proof Explorer


Theorem syland

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syland.1 ( 𝜑 → ( 𝜓𝜒 ) )
syland.2 ( 𝜑 → ( ( 𝜒𝜃 ) → 𝜏 ) )
Assertion syland ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜏 ) )

Proof

Step Hyp Ref Expression
1 syland.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syland.2 ( 𝜑 → ( ( 𝜒𝜃 ) → 𝜏 ) )
3 2 expd ( 𝜑 → ( 𝜒 → ( 𝜃𝜏 ) ) )
4 1 3 syld ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
5 4 impd ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜏 ) )