Description: A syllogism inference. (Contributed by NM, 2-May-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
sylani.2 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
Assertion | sylani | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
2 | sylani.2 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
3 | 1 | a1i | ⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) |
4 | 3 2 | syland | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) ) |