Metamath Proof Explorer


Theorem sylani

Description: A syllogism inference. (Contributed by NM, 2-May-1996)

Ref Expression
Hypotheses sylani.1 ( 𝜑𝜒 )
sylani.2 ( 𝜓 → ( ( 𝜒𝜃 ) → 𝜏 ) )
Assertion sylani ( 𝜓 → ( ( 𝜑𝜃 ) → 𝜏 ) )

Proof

Step Hyp Ref Expression
1 sylani.1 ( 𝜑𝜒 )
2 sylani.2 ( 𝜓 → ( ( 𝜒𝜃 ) → 𝜏 ) )
3 1 a1i ( 𝜓 → ( 𝜑𝜒 ) )
4 3 2 syland ( 𝜓 → ( ( 𝜑𝜃 ) → 𝜏 ) )