Description: A syllogism inference. (Contributed by NM, 2-May-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| sylani.2 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
| Assertion | sylani | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| 2 | sylani.2 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
| 3 | 1 | a1i | ⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) |
| 4 | 3 2 | syland | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) ) |