Description: A syllogism inference. (Contributed by NM, 10-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanl1.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| sylanl1.2 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | sylanl1 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | sylanl1.2 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | anim1i | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜓 ∧ 𝜒 ) ) |
| 4 | 3 2 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |