Description: A syllogism inference. (Contributed by NM, 1-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanl2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| sylanl2.2 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | sylanl2 | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| 2 | sylanl2.2 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | adantl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) |
| 4 | 3 2 | syldanl | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜃 ) → 𝜏 ) |