Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanr1.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| sylanr1.2 | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | ||
| Assertion | sylanr1 | ⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜃 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| 2 | sylanr1.2 | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
| 3 | 1 | anim1i | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) |
| 4 | 3 2 | sylan2 | ⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜃 ) ) → 𝜏 ) |