Metamath Proof Explorer


Theorem sylanr1

Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses sylanr1.1 ( 𝜑𝜒 )
sylanr1.2 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜏 )
Assertion sylanr1 ( ( 𝜓 ∧ ( 𝜑𝜃 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 sylanr1.1 ( 𝜑𝜒 )
2 sylanr1.2 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜏 )
3 1 anim1i ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) )
4 3 2 sylan2 ( ( 𝜓 ∧ ( 𝜑𝜃 ) ) → 𝜏 )