Metamath Proof Explorer


Theorem sylanr2

Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses sylanr2.1 ( 𝜑𝜃 )
sylanr2.2 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜏 )
Assertion sylanr2 ( ( 𝜓 ∧ ( 𝜒𝜑 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 sylanr2.1 ( 𝜑𝜃 )
2 sylanr2.2 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜏 )
3 1 anim2i ( ( 𝜒𝜑 ) → ( 𝜒𝜃 ) )
4 3 2 sylan2 ( ( 𝜓 ∧ ( 𝜒𝜑 ) ) → 𝜏 )