Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanr2.1 | ⊢ ( 𝜑 → 𝜃 ) | |
sylanr2.2 | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | ||
Assertion | sylanr2 | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜑 ) ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | ⊢ ( 𝜑 → 𝜃 ) | |
2 | sylanr2.2 | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
3 | 1 | anim2i | ⊢ ( ( 𝜒 ∧ 𝜑 ) → ( 𝜒 ∧ 𝜃 ) ) |
4 | 3 2 | sylan2 | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜑 ) ) → 𝜏 ) |