Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylbb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| sylbb.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
| Assertion | sylbb | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | sylbb.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 3 | 2 | biimpi | ⊢ ( 𝜓 → 𝜒 ) |
| 4 | 1 3 | sylbi | ⊢ ( 𝜑 → 𝜒 ) |