Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylbb1.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
sylbb1.2 | ⊢ ( 𝜑 ↔ 𝜒 ) | ||
Assertion | sylbb1 | ⊢ ( 𝜓 → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
2 | sylbb1.2 | ⊢ ( 𝜑 ↔ 𝜒 ) | |
3 | 1 | biimpri | ⊢ ( 𝜓 → 𝜑 ) |
4 | 3 2 | sylib | ⊢ ( 𝜓 → 𝜒 ) |