Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| sylbid.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | sylbid | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | sylbid.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
| 3 | 1 | biimpd | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 | 3 2 | syld | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |