Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylbida.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| sylbida.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | sylbida | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | sylbida.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | 1 | biimpa | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
| 4 | 3 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |