Metamath Proof Explorer


Theorem sylbida

Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024)

Ref Expression
Hypotheses sylbida.1 ( 𝜑 → ( 𝜓𝜒 ) )
sylbida.2 ( ( 𝜑𝜒 ) → 𝜃 )
Assertion sylbida ( ( 𝜑𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylbida.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sylbida.2 ( ( 𝜑𝜒 ) → 𝜃 )
3 1 biimpa ( ( 𝜑𝜓 ) → 𝜒 )
4 3 2 syldan ( ( 𝜑𝜓 ) → 𝜃 )