Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylbird.1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜓 ) ) | |
| sylbird.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | sylbird | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜓 ) ) | |
| 2 | sylbird.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
| 3 | 1 | biimprd | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 | 3 2 | syld | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |