Metamath Proof Explorer


Theorem syld3an2

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an2.1 ( ( 𝜑𝜒𝜃 ) → 𝜓 )
syld3an2.2 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
Assertion syld3an2 ( ( 𝜑𝜒𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syld3an2.1 ( ( 𝜑𝜒𝜃 ) → 𝜓 )
2 syld3an2.2 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
3 simp1 ( ( 𝜑𝜒𝜃 ) → 𝜑 )
4 simp3 ( ( 𝜑𝜒𝜃 ) → 𝜃 )
5 3 1 4 2 syl3anc ( ( 𝜑𝜒𝜃 ) → 𝜏 )