Metamath Proof Explorer
Description: A syllogism inference. (Contributed by NM, 20-May-2007)
|
|
Ref |
Expression |
|
Hypotheses |
syld3an2.1 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜓 ) |
|
|
syld3an2.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
syld3an2 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syld3an2.1 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜓 ) |
2 |
|
syld3an2.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
3 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜑 ) |
4 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜃 ) |
5 |
3 1 4 2
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |