Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syldanl.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| syldanl.2 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | syldanl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | syldanl.2 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 | 3 | imdistani | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) |
| 5 | 4 2 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → 𝜏 ) |