Metamath Proof Explorer


Theorem syldanl

Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses syldanl.1 ( ( 𝜑𝜓 ) → 𝜒 )
syldanl.2 ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion syldanl ( ( ( 𝜑𝜓 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syldanl.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 syldanl.2 ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) → 𝜏 )
3 1 ex ( 𝜑 → ( 𝜓𝜒 ) )
4 3 imdistani ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) )
5 4 2 sylan ( ( ( 𝜑𝜓 ) ∧ 𝜃 ) → 𝜏 )