Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syldanl.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
syldanl.2 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
Assertion | syldanl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldanl.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
2 | syldanl.2 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
3 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
4 | 3 | imdistani | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) |
5 | 4 2 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → 𝜏 ) |