Description: Syllogism inference with common nested antecedent. (Contributed by NM, 4-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syli.1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) | |
syli.2 | ⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) | ||
Assertion | syli | ⊢ ( 𝜓 → ( 𝜑 → 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syli.1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) | |
2 | syli.2 | ⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) | |
3 | 2 | com12 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) |
4 | 1 3 | sylcom | ⊢ ( 𝜓 → ( 𝜑 → 𝜃 ) ) |