Description: Syllogism inference with common nested antecedent. (Contributed by NM, 4-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syli.1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) | |
| syli.2 | ⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) | ||
| Assertion | syli | ⊢ ( 𝜓 → ( 𝜑 → 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syli.1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) | |
| 2 | syli.2 | ⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) | |
| 3 | 2 | com12 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) |
| 4 | 1 3 | sylcom | ⊢ ( 𝜓 → ( 𝜑 → 𝜃 ) ) |