Metamath Proof Explorer


Theorem syli

Description: Syllogism inference with common nested antecedent. (Contributed by NM, 4-Nov-2004)

Ref Expression
Hypotheses syli.1 ( 𝜓 → ( 𝜑𝜒 ) )
syli.2 ( 𝜒 → ( 𝜑𝜃 ) )
Assertion syli ( 𝜓 → ( 𝜑𝜃 ) )

Proof

Step Hyp Ref Expression
1 syli.1 ( 𝜓 → ( 𝜑𝜒 ) )
2 syli.2 ( 𝜒 → ( 𝜑𝜃 ) )
3 2 com12 ( 𝜑 → ( 𝜒𝜃 ) )
4 1 3 sylcom ( 𝜓 → ( 𝜑𝜃 ) )