Metamath Proof Explorer


Theorem sylibr

Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylibr.1 ( 𝜑𝜓 )
sylibr.2 ( 𝜒𝜓 )
Assertion sylibr ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 sylibr.1 ( 𝜑𝜓 )
2 sylibr.2 ( 𝜒𝜓 )
3 2 biimpri ( 𝜓𝜒 )
4 1 3 syl ( 𝜑𝜒 )