Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylibrd.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| sylibrd.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) | ||
| Assertion | sylibrd | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | sylibrd.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) | |
| 3 | 2 | biimprd | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) |
| 4 | 1 3 | syld | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |