Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylnbir.1 | ⊢ ( 𝜓 ↔ 𝜑 ) | |
| sylnbir.2 | ⊢ ( ¬ 𝜓 → 𝜒 ) | ||
| Assertion | sylnbir | ⊢ ( ¬ 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | ⊢ ( 𝜓 ↔ 𝜑 ) | |
| 2 | sylnbir.2 | ⊢ ( ¬ 𝜓 → 𝜒 ) | |
| 3 | 1 | bicomi | ⊢ ( 𝜑 ↔ 𝜓 ) |
| 4 | 3 2 | sylnbi | ⊢ ( ¬ 𝜑 → 𝜒 ) |