Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylnbir.1 | ⊢ ( 𝜓 ↔ 𝜑 ) | |
sylnbir.2 | ⊢ ( ¬ 𝜓 → 𝜒 ) | ||
Assertion | sylnbir | ⊢ ( ¬ 𝜑 → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | ⊢ ( 𝜓 ↔ 𝜑 ) | |
2 | sylnbir.2 | ⊢ ( ¬ 𝜓 → 𝜒 ) | |
3 | 1 | bicomi | ⊢ ( 𝜑 ↔ 𝜓 ) |
4 | 3 2 | sylnbi | ⊢ ( ¬ 𝜑 → 𝜒 ) |