Metamath Proof Explorer


Theorem sylnib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnib.1 ( 𝜑 → ¬ 𝜓 )
sylnib.2 ( 𝜓𝜒 )
Assertion sylnib ( 𝜑 → ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 sylnib.1 ( 𝜑 → ¬ 𝜓 )
2 sylnib.2 ( 𝜓𝜒 )
3 2 biimpri ( 𝜒𝜓 )
4 1 3 nsyl ( 𝜑 → ¬ 𝜒 )