Metamath Proof Explorer


Theorem sylnibr

Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnibr.1 ( 𝜑 → ¬ 𝜓 )
sylnibr.2 ( 𝜒𝜓 )
Assertion sylnibr ( 𝜑 → ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 sylnibr.1 ( 𝜑 → ¬ 𝜓 )
2 sylnibr.2 ( 𝜒𝜓 )
3 2 bicomi ( 𝜓𝜒 )
4 1 3 sylnib ( 𝜑 → ¬ 𝜒 )