Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow1.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
sylow1.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
4 |
|
sylow1.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
sylow1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
sylow1.d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) |
7 |
|
sylow1lem.a |
⊢ + = ( +g ‘ 𝐺 ) |
8 |
|
sylow1lem.s |
⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } |
9 |
|
sylow1lem.m |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
10 |
|
sylow1lem3.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
11 |
1 2 3 4 5 6 7 8
|
sylow1lem1 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
12 |
11
|
simpld |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ ) |
13 |
|
pcndvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) ∥ ( ♯ ‘ 𝑆 ) ) |
14 |
4 12 13
|
syl2anc |
⊢ ( 𝜑 → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) ∥ ( ♯ ‘ 𝑆 ) ) |
15 |
11
|
simprd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) = ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) = ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ) |
18 |
1 2 3 4 5 6 7 8 9
|
sylow1lem2 |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |
19 |
10 1
|
gaorber |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) → ∼ Er 𝑆 ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑆 ) |
21 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
22 |
3 21
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
23 |
8
|
ssrab3 |
⊢ 𝑆 ⊆ 𝒫 𝑋 |
24 |
|
ssfi |
⊢ ( ( 𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋 ) → 𝑆 ∈ Fin ) |
25 |
22 23 24
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
26 |
20 25
|
qshash |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
27 |
17 26
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) ∥ ( ♯ ‘ 𝑆 ) ↔ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) ) |
28 |
14 27
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
29 |
|
pwfi |
⊢ ( 𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin ) |
30 |
25 29
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑆 ∈ Fin ) |
31 |
20
|
qsss |
⊢ ( 𝜑 → ( 𝑆 / ∼ ) ⊆ 𝒫 𝑆 ) |
32 |
30 31
|
ssfid |
⊢ ( 𝜑 → ( 𝑆 / ∼ ) ∈ Fin ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ( 𝑆 / ∼ ) ∈ Fin ) |
34 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
35 |
4 34
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
36 |
4 12
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
37 |
15 36
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℕ0 ) |
38 |
|
peano2nn0 |
⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℕ0 → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) |
40 |
35 39
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∈ ℕ ) |
41 |
40
|
nnzd |
⊢ ( 𝜑 → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∈ ℤ ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∈ ℤ ) |
43 |
|
erdm |
⊢ ( ∼ Er 𝑆 → dom ∼ = 𝑆 ) |
44 |
20 43
|
syl |
⊢ ( 𝜑 → dom ∼ = 𝑆 ) |
45 |
|
elqsn0 |
⊢ ( ( dom ∼ = 𝑆 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ≠ ∅ ) |
46 |
44 45
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ≠ ∅ ) |
47 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑆 ∈ Fin ) |
48 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ∈ 𝒫 𝑆 ) |
49 |
48
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ⊆ 𝑆 ) |
50 |
47 49
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ∈ Fin ) |
51 |
|
hashnncl |
⊢ ( 𝑧 ∈ Fin → ( ( ♯ ‘ 𝑧 ) ∈ ℕ ↔ 𝑧 ≠ ∅ ) ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ♯ ‘ 𝑧 ) ∈ ℕ ↔ 𝑧 ≠ ∅ ) ) |
53 |
46 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ ) |
55 |
54
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℤ ) |
56 |
|
fveq2 |
⊢ ( 𝑎 = 𝑧 → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑧 ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝑎 = 𝑧 → ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) |
58 |
57
|
breq1d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
59 |
58
|
notbid |
⊢ ( 𝑎 = 𝑧 → ( ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
60 |
59
|
rspccva |
⊢ ( ( ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
61 |
60
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
62 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
63 |
2 62
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
64 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
65 |
3 64
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
66 |
63 65
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
67 |
4 66
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
68 |
67
|
nn0zd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
69 |
5
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
70 |
68 69
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ) |
72 |
71
|
zred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℝ ) |
73 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑃 ∈ ℙ ) |
74 |
73 54
|
pccld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℕ0 ) |
75 |
74
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℤ ) |
76 |
75
|
zred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℝ ) |
77 |
72 76
|
ltnled |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
78 |
61 77
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) |
79 |
|
zltp1le |
⊢ ( ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℤ ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) ) |
80 |
71 75 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) ) |
81 |
78 80
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) |
82 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) |
83 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑧 ) ∈ ℤ ∧ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) → ( ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ ( ♯ ‘ 𝑧 ) ) ) |
84 |
73 55 82 83
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ ( ♯ ‘ 𝑧 ) ) ) |
85 |
81 84
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ ( ♯ ‘ 𝑧 ) ) |
86 |
33 42 55 85
|
fsumdvds |
⊢ ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
87 |
28 86
|
mtand |
⊢ ( 𝜑 → ¬ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
88 |
|
dfrex2 |
⊢ ( ∃ 𝑎 ∈ ( 𝑆 / ∼ ) ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ¬ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
89 |
87 88
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( 𝑆 / ∼ ) ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
90 |
|
eqid |
⊢ ( 𝑆 / ∼ ) = ( 𝑆 / ∼ ) |
91 |
|
fveq2 |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ♯ ‘ [ 𝑧 ] ∼ ) = ( ♯ ‘ 𝑎 ) ) |
92 |
91
|
oveq2d |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ) |
93 |
92
|
breq1d |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
94 |
93
|
imbi1d |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ↔ ( ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) ) |
95 |
|
eceq1 |
⊢ ( 𝑤 = 𝑧 → [ 𝑤 ] ∼ = [ 𝑧 ] ∼ ) |
96 |
95
|
fveq2d |
⊢ ( 𝑤 = 𝑧 → ( ♯ ‘ [ 𝑤 ] ∼ ) = ( ♯ ‘ [ 𝑧 ] ∼ ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) = ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ) |
98 |
97
|
breq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
99 |
98
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
100 |
99
|
ex |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
102 |
90 94 101
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
103 |
102
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝑆 / ∼ ) ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
104 |
89 103
|
mpd |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |