Metamath Proof Explorer


Theorem sylow1lem4

Description: Lemma for sylow1 . The stabilizer subgroup of any element of S is at most P ^ N in size. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses sylow1.x 𝑋 = ( Base ‘ 𝐺 )
sylow1.g ( 𝜑𝐺 ∈ Grp )
sylow1.f ( 𝜑𝑋 ∈ Fin )
sylow1.p ( 𝜑𝑃 ∈ ℙ )
sylow1.n ( 𝜑𝑁 ∈ ℕ0 )
sylow1.d ( 𝜑 → ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝑋 ) )
sylow1lem.a + = ( +g𝐺 )
sylow1lem.s 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃𝑁 ) }
sylow1lem.m = ( 𝑥𝑋 , 𝑦𝑆 ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
sylow1lem3.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
sylow1lem4.b ( 𝜑𝐵𝑆 )
sylow1lem4.h 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐵 ) = 𝐵 }
Assertion sylow1lem4 ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃𝑁 ) )

Proof

Step Hyp Ref Expression
1 sylow1.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow1.g ( 𝜑𝐺 ∈ Grp )
3 sylow1.f ( 𝜑𝑋 ∈ Fin )
4 sylow1.p ( 𝜑𝑃 ∈ ℙ )
5 sylow1.n ( 𝜑𝑁 ∈ ℕ0 )
6 sylow1.d ( 𝜑 → ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝑋 ) )
7 sylow1lem.a + = ( +g𝐺 )
8 sylow1lem.s 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃𝑁 ) }
9 sylow1lem.m = ( 𝑥𝑋 , 𝑦𝑆 ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
10 sylow1lem3.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
11 sylow1lem4.b ( 𝜑𝐵𝑆 )
12 sylow1lem4.h 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐵 ) = 𝐵 }
13 fveqeq2 ( 𝑠 = 𝐵 → ( ( ♯ ‘ 𝑠 ) = ( 𝑃𝑁 ) ↔ ( ♯ ‘ 𝐵 ) = ( 𝑃𝑁 ) ) )
14 13 8 elrab2 ( 𝐵𝑆 ↔ ( 𝐵 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝐵 ) = ( 𝑃𝑁 ) ) )
15 11 14 sylib ( 𝜑 → ( 𝐵 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝐵 ) = ( 𝑃𝑁 ) ) )
16 15 simprd ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑃𝑁 ) )
17 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
18 4 17 syl ( 𝜑𝑃 ∈ ℕ )
19 18 5 nnexpcld ( 𝜑 → ( 𝑃𝑁 ) ∈ ℕ )
20 16 19 eqeltrd ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ )
21 20 nnne0d ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 )
22 hasheq0 ( 𝐵𝑆 → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) )
23 22 necon3bid ( 𝐵𝑆 → ( ( ♯ ‘ 𝐵 ) ≠ 0 ↔ 𝐵 ≠ ∅ ) )
24 11 23 syl ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ≠ 0 ↔ 𝐵 ≠ ∅ ) )
25 21 24 mpbid ( 𝜑𝐵 ≠ ∅ )
26 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑎 𝑎𝐵 )
27 25 26 sylib ( 𝜑 → ∃ 𝑎 𝑎𝐵 )
28 11 adantr ( ( 𝜑𝑎𝐵 ) → 𝐵𝑆 )
29 simplr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → 𝑎𝐵 )
30 oveq2 ( 𝑧 = 𝑎 → ( 𝑏 + 𝑧 ) = ( 𝑏 + 𝑎 ) )
31 eqid ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) = ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) )
32 ovex ( 𝑏 + 𝑎 ) ∈ V
33 30 31 32 fvmpt ( 𝑎𝐵 → ( ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) = ( 𝑏 + 𝑎 ) )
34 29 33 syl ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) = ( 𝑏 + 𝑎 ) )
35 ovex ( 𝑏 + 𝑧 ) ∈ V
36 35 31 fnmpti ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) Fn 𝐵
37 fnfvelrn ( ( ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) Fn 𝐵𝑎𝐵 ) → ( ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) ∈ ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
38 36 29 37 sylancr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) ∈ ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
39 34 38 eqeltrrd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( 𝑏 + 𝑎 ) ∈ ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
40 12 ssrab3 𝐻𝑋
41 simpr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → 𝑏𝐻 )
42 40 41 sselid ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → 𝑏𝑋 )
43 11 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → 𝐵𝑆 )
44 mptexg ( 𝐵𝑆 → ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V )
45 rnexg ( ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V → ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V )
46 43 44 45 3syl ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V )
47 simpr ( ( 𝑥 = 𝑏𝑦 = 𝐵 ) → 𝑦 = 𝐵 )
48 simpl ( ( 𝑥 = 𝑏𝑦 = 𝐵 ) → 𝑥 = 𝑏 )
49 48 oveq1d ( ( 𝑥 = 𝑏𝑦 = 𝐵 ) → ( 𝑥 + 𝑧 ) = ( 𝑏 + 𝑧 ) )
50 47 49 mpteq12dv ( ( 𝑥 = 𝑏𝑦 = 𝐵 ) → ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
51 50 rneqd ( ( 𝑥 = 𝑏𝑦 = 𝐵 ) → ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
52 51 9 ovmpoga ( ( 𝑏𝑋𝐵𝑆 ∧ ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) → ( 𝑏 𝐵 ) = ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
53 42 43 46 52 syl3anc ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( 𝑏 𝐵 ) = ran ( 𝑧𝐵 ↦ ( 𝑏 + 𝑧 ) ) )
54 39 53 eleqtrrd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( 𝑏 + 𝑎 ) ∈ ( 𝑏 𝐵 ) )
55 oveq1 ( 𝑢 = 𝑏 → ( 𝑢 𝐵 ) = ( 𝑏 𝐵 ) )
56 55 eqeq1d ( 𝑢 = 𝑏 → ( ( 𝑢 𝐵 ) = 𝐵 ↔ ( 𝑏 𝐵 ) = 𝐵 ) )
57 56 12 elrab2 ( 𝑏𝐻 ↔ ( 𝑏𝑋 ∧ ( 𝑏 𝐵 ) = 𝐵 ) )
58 57 simprbi ( 𝑏𝐻 → ( 𝑏 𝐵 ) = 𝐵 )
59 58 adantl ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( 𝑏 𝐵 ) = 𝐵 )
60 54 59 eleqtrd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐻 ) → ( 𝑏 + 𝑎 ) ∈ 𝐵 )
61 60 ex ( ( 𝜑𝑎𝐵 ) → ( 𝑏𝐻 → ( 𝑏 + 𝑎 ) ∈ 𝐵 ) )
62 2 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → 𝐺 ∈ Grp )
63 simprl ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → 𝑏𝐻 )
64 40 63 sselid ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → 𝑏𝑋 )
65 simprr ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → 𝑐𝐻 )
66 40 65 sselid ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → 𝑐𝑋 )
67 15 simpld ( 𝜑𝐵 ∈ 𝒫 𝑋 )
68 67 elpwid ( 𝜑𝐵𝑋 )
69 68 sselda ( ( 𝜑𝑎𝐵 ) → 𝑎𝑋 )
70 69 adantr ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → 𝑎𝑋 )
71 1 7 grprcan ( ( 𝐺 ∈ Grp ∧ ( 𝑏𝑋𝑐𝑋𝑎𝑋 ) ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) )
72 62 64 66 70 71 syl13anc ( ( ( 𝜑𝑎𝐵 ) ∧ ( 𝑏𝐻𝑐𝐻 ) ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) )
73 72 ex ( ( 𝜑𝑎𝐵 ) → ( ( 𝑏𝐻𝑐𝐻 ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) )
74 61 73 dom2d ( ( 𝜑𝑎𝐵 ) → ( 𝐵𝑆𝐻𝐵 ) )
75 28 74 mpd ( ( 𝜑𝑎𝐵 ) → 𝐻𝐵 )
76 27 75 exlimddv ( 𝜑𝐻𝐵 )
77 ssfi ( ( 𝑋 ∈ Fin ∧ 𝐻𝑋 ) → 𝐻 ∈ Fin )
78 3 40 77 sylancl ( 𝜑𝐻 ∈ Fin )
79 3 68 ssfid ( 𝜑𝐵 ∈ Fin )
80 hashdom ( ( 𝐻 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐻𝐵 ) )
81 78 79 80 syl2anc ( 𝜑 → ( ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐻𝐵 ) )
82 76 81 mpbird ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) )
83 82 16 breqtrd ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃𝑁 ) )