| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow1.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 3 |
|
sylow1.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 4 |
|
sylow1.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
sylow1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
|
sylow1.d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 7 |
|
sylow1lem.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 8 |
|
sylow1lem.s |
⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } |
| 9 |
|
sylow1lem.m |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 10 |
|
sylow1lem3.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
| 11 |
|
sylow1lem4.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 12 |
|
sylow1lem4.h |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐵 ) = 𝐵 } |
| 13 |
|
fveqeq2 |
⊢ ( 𝑠 = 𝐵 → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 14 |
13 8
|
elrab2 |
⊢ ( 𝐵 ∈ 𝑆 ↔ ( 𝐵 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 15 |
11 14
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 16 |
15
|
simprd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 17 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 18 |
4 17
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 19 |
18 5
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 20 |
16 19
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 21 |
20
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
| 22 |
|
hasheq0 |
⊢ ( 𝐵 ∈ 𝑆 → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) |
| 23 |
22
|
necon3bid |
⊢ ( 𝐵 ∈ 𝑆 → ( ( ♯ ‘ 𝐵 ) ≠ 0 ↔ 𝐵 ≠ ∅ ) ) |
| 24 |
11 23
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ≠ 0 ↔ 𝐵 ≠ ∅ ) ) |
| 25 |
21 24
|
mpbid |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 26 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐵 ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝜑 → ∃ 𝑎 𝑎 ∈ 𝐵 ) |
| 28 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝑎 ∈ 𝐵 ) |
| 30 |
|
oveq2 |
⊢ ( 𝑧 = 𝑎 → ( 𝑏 + 𝑧 ) = ( 𝑏 + 𝑎 ) ) |
| 31 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) |
| 32 |
|
ovex |
⊢ ( 𝑏 + 𝑎 ) ∈ V |
| 33 |
30 31 32
|
fvmpt |
⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) = ( 𝑏 + 𝑎 ) ) |
| 34 |
29 33
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) = ( 𝑏 + 𝑎 ) ) |
| 35 |
|
ovex |
⊢ ( 𝑏 + 𝑧 ) ∈ V |
| 36 |
35 31
|
fnmpti |
⊢ ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) Fn 𝐵 |
| 37 |
|
fnfvelrn |
⊢ ( ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) Fn 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) ∈ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 38 |
36 29 37
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) ∈ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 39 |
34 38
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 + 𝑎 ) ∈ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 40 |
12
|
ssrab3 |
⊢ 𝐻 ⊆ 𝑋 |
| 41 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝑏 ∈ 𝐻 ) |
| 42 |
40 41
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝑏 ∈ 𝑋 ) |
| 43 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝐵 ∈ 𝑆 ) |
| 44 |
|
mptexg |
⊢ ( 𝐵 ∈ 𝑆 → ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) |
| 45 |
|
rnexg |
⊢ ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V → ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) |
| 46 |
43 44 45
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) |
| 47 |
|
simpr |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 48 |
|
simpl |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝑏 ) |
| 49 |
48
|
oveq1d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → ( 𝑥 + 𝑧 ) = ( 𝑏 + 𝑧 ) ) |
| 50 |
47 49
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 51 |
50
|
rneqd |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 52 |
51 9
|
ovmpoga |
⊢ ( ( 𝑏 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ∧ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) → ( 𝑏 ⊕ 𝐵 ) = ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 53 |
42 43 46 52
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 ⊕ 𝐵 ) = ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 54 |
39 53
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 + 𝑎 ) ∈ ( 𝑏 ⊕ 𝐵 ) ) |
| 55 |
|
oveq1 |
⊢ ( 𝑢 = 𝑏 → ( 𝑢 ⊕ 𝐵 ) = ( 𝑏 ⊕ 𝐵 ) ) |
| 56 |
55
|
eqeq1d |
⊢ ( 𝑢 = 𝑏 → ( ( 𝑢 ⊕ 𝐵 ) = 𝐵 ↔ ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) ) |
| 57 |
56 12
|
elrab2 |
⊢ ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ 𝑋 ∧ ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) ) |
| 58 |
57
|
simprbi |
⊢ ( 𝑏 ∈ 𝐻 → ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) |
| 59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) |
| 60 |
54 59
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 + 𝑎 ) ∈ 𝐵 ) |
| 61 |
60
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐻 → ( 𝑏 + 𝑎 ) ∈ 𝐵 ) ) |
| 62 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 63 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑏 ∈ 𝐻 ) |
| 64 |
40 63
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑏 ∈ 𝑋 ) |
| 65 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑐 ∈ 𝐻 ) |
| 66 |
40 65
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑐 ∈ 𝑋 ) |
| 67 |
15
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝑋 ) |
| 68 |
67
|
elpwid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑋 ) |
| 69 |
68
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝑋 ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑎 ∈ 𝑋 ) |
| 71 |
1 7
|
grprcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) |
| 72 |
62 64 66 70 71
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) |
| 73 |
72
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) ) |
| 74 |
61 73
|
dom2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐵 ∈ 𝑆 → 𝐻 ≼ 𝐵 ) ) |
| 75 |
28 74
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐻 ≼ 𝐵 ) |
| 76 |
27 75
|
exlimddv |
⊢ ( 𝜑 → 𝐻 ≼ 𝐵 ) |
| 77 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝐻 ⊆ 𝑋 ) → 𝐻 ∈ Fin ) |
| 78 |
3 40 77
|
sylancl |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 79 |
3 68
|
ssfid |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 80 |
|
hashdom |
⊢ ( ( 𝐻 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐻 ≼ 𝐵 ) ) |
| 81 |
78 79 80
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐻 ≼ 𝐵 ) ) |
| 82 |
76 81
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 83 |
82 16
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |