Metamath Proof Explorer


Theorem sylow1lem5

Description: Lemma for sylow1 . Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly P ^ N . (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses sylow1.x 𝑋 = ( Base ‘ 𝐺 )
sylow1.g ( 𝜑𝐺 ∈ Grp )
sylow1.f ( 𝜑𝑋 ∈ Fin )
sylow1.p ( 𝜑𝑃 ∈ ℙ )
sylow1.n ( 𝜑𝑁 ∈ ℕ0 )
sylow1.d ( 𝜑 → ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝑋 ) )
sylow1lem.a + = ( +g𝐺 )
sylow1lem.s 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃𝑁 ) }
sylow1lem.m = ( 𝑥𝑋 , 𝑦𝑆 ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
sylow1lem3.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
sylow1lem4.b ( 𝜑𝐵𝑆 )
sylow1lem4.h 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐵 ) = 𝐵 }
sylow1lem5.l ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) )
Assertion sylow1lem5 ( 𝜑 → ∃ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ) = ( 𝑃𝑁 ) )

Proof

Step Hyp Ref Expression
1 sylow1.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow1.g ( 𝜑𝐺 ∈ Grp )
3 sylow1.f ( 𝜑𝑋 ∈ Fin )
4 sylow1.p ( 𝜑𝑃 ∈ ℙ )
5 sylow1.n ( 𝜑𝑁 ∈ ℕ0 )
6 sylow1.d ( 𝜑 → ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝑋 ) )
7 sylow1lem.a + = ( +g𝐺 )
8 sylow1lem.s 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃𝑁 ) }
9 sylow1lem.m = ( 𝑥𝑋 , 𝑦𝑆 ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
10 sylow1lem3.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
11 sylow1lem4.b ( 𝜑𝐵𝑆 )
12 sylow1lem4.h 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐵 ) = 𝐵 }
13 sylow1lem5.l ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) )
14 1 2 3 4 5 6 7 8 9 sylow1lem2 ( 𝜑 ∈ ( 𝐺 GrpAct 𝑆 ) )
15 1 12 gastacl ( ( ∈ ( 𝐺 GrpAct 𝑆 ) ∧ 𝐵𝑆 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
16 14 11 15 syl2anc ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
17 1 2 3 4 5 6 7 8 9 10 11 12 sylow1lem4 ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃𝑁 ) )
18 10 1 gaorber ( ∈ ( 𝐺 GrpAct 𝑆 ) → Er 𝑆 )
19 14 18 syl ( 𝜑 Er 𝑆 )
20 erdm ( Er 𝑆 → dom = 𝑆 )
21 19 20 syl ( 𝜑 → dom = 𝑆 )
22 11 21 eleqtrrd ( 𝜑𝐵 ∈ dom )
23 ecdmn0 ( 𝐵 ∈ dom ↔ [ 𝐵 ] ≠ ∅ )
24 22 23 sylib ( 𝜑 → [ 𝐵 ] ≠ ∅ )
25 pwfi ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin )
26 3 25 sylib ( 𝜑 → 𝒫 𝑋 ∈ Fin )
27 8 ssrab3 𝑆 ⊆ 𝒫 𝑋
28 ssfi ( ( 𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋 ) → 𝑆 ∈ Fin )
29 26 27 28 sylancl ( 𝜑𝑆 ∈ Fin )
30 19 ecss ( 𝜑 → [ 𝐵 ] 𝑆 )
31 29 30 ssfid ( 𝜑 → [ 𝐵 ] ∈ Fin )
32 hashnncl ( [ 𝐵 ] ∈ Fin → ( ( ♯ ‘ [ 𝐵 ] ) ∈ ℕ ↔ [ 𝐵 ] ≠ ∅ ) )
33 31 32 syl ( 𝜑 → ( ( ♯ ‘ [ 𝐵 ] ) ∈ ℕ ↔ [ 𝐵 ] ≠ ∅ ) )
34 24 33 mpbird ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ) ∈ ℕ )
35 4 34 pccld ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ∈ ℕ0 )
36 35 nn0red ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ∈ ℝ )
37 5 nn0red ( 𝜑𝑁 ∈ ℝ )
38 1 grpbn0 ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ )
39 2 38 syl ( 𝜑𝑋 ≠ ∅ )
40 hashnncl ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) )
41 3 40 syl ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) )
42 39 41 mpbird ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ )
43 4 42 pccld ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 )
44 43 nn0red ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ )
45 leaddsub ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) )
46 36 37 44 45 syl3anc ( 𝜑 → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) )
47 13 46 mpbird ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) )
48 eqid ( 𝐺 ~QG 𝐻 ) = ( 𝐺 ~QG 𝐻 )
49 1 12 48 10 orbsta2 ( ( ( ∈ ( 𝐺 GrpAct 𝑆 ) ∧ 𝐵𝑆 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐵 ] ) · ( ♯ ‘ 𝐻 ) ) )
50 14 11 3 49 syl21anc ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐵 ] ) · ( ♯ ‘ 𝐻 ) ) )
51 50 oveq2d ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ) · ( ♯ ‘ 𝐻 ) ) ) )
52 34 nnzd ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ) ∈ ℤ )
53 34 nnne0d ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ) ≠ 0 )
54 eqid ( 0g𝐺 ) = ( 0g𝐺 )
55 54 subg0cl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ 𝐻 )
56 16 55 syl ( 𝜑 → ( 0g𝐺 ) ∈ 𝐻 )
57 56 ne0d ( 𝜑𝐻 ≠ ∅ )
58 12 ssrab3 𝐻𝑋
59 ssfi ( ( 𝑋 ∈ Fin ∧ 𝐻𝑋 ) → 𝐻 ∈ Fin )
60 3 58 59 sylancl ( 𝜑𝐻 ∈ Fin )
61 hashnncl ( 𝐻 ∈ Fin → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) )
62 60 61 syl ( 𝜑 → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) )
63 57 62 mpbird ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ )
64 63 nnzd ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ )
65 63 nnne0d ( 𝜑 → ( ♯ ‘ 𝐻 ) ≠ 0 )
66 pcmul ( ( 𝑃 ∈ ℙ ∧ ( ( ♯ ‘ [ 𝐵 ] ) ∈ ℤ ∧ ( ♯ ‘ [ 𝐵 ] ) ≠ 0 ) ∧ ( ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ) · ( ♯ ‘ 𝐻 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) )
67 4 52 53 64 65 66 syl122anc ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ) · ( ♯ ‘ 𝐻 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) )
68 51 67 eqtrd ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) )
69 47 68 breqtrd ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + 𝑁 ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) )
70 4 63 pccld ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ∈ ℕ0 )
71 70 nn0red ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ∈ ℝ )
72 37 71 36 leadd2d ( 𝜑 → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + 𝑁 ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) )
73 69 72 mpbird ( 𝜑𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) )
74 pcdvdsb ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) )
75 4 64 5 74 syl3anc ( 𝜑 → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) )
76 73 75 mpbid ( 𝜑 → ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝐻 ) )
77 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
78 4 77 syl ( 𝜑𝑃 ∈ ℕ )
79 78 5 nnexpcld ( 𝜑 → ( 𝑃𝑁 ) ∈ ℕ )
80 79 nnzd ( 𝜑 → ( 𝑃𝑁 ) ∈ ℤ )
81 dvdsle ( ( ( 𝑃𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ∈ ℕ ) → ( ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝐻 ) → ( 𝑃𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) )
82 80 63 81 syl2anc ( 𝜑 → ( ( 𝑃𝑁 ) ∥ ( ♯ ‘ 𝐻 ) → ( 𝑃𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) )
83 76 82 mpd ( 𝜑 → ( 𝑃𝑁 ) ≤ ( ♯ ‘ 𝐻 ) )
84 hashcl ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 )
85 60 84 syl ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 )
86 85 nn0red ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℝ )
87 79 nnred ( 𝜑 → ( 𝑃𝑁 ) ∈ ℝ )
88 86 87 letri3d ( 𝜑 → ( ( ♯ ‘ 𝐻 ) = ( 𝑃𝑁 ) ↔ ( ( ♯ ‘ 𝐻 ) ≤ ( 𝑃𝑁 ) ∧ ( 𝑃𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) )
89 17 83 88 mpbir2and ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃𝑁 ) )
90 fveqeq2 ( = 𝐻 → ( ( ♯ ‘ ) = ( 𝑃𝑁 ) ↔ ( ♯ ‘ 𝐻 ) = ( 𝑃𝑁 ) ) )
91 90 rspcev ( ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃𝑁 ) ) → ∃ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ) = ( 𝑃𝑁 ) )
92 16 89 91 syl2anc ( 𝜑 → ∃ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ) = ( 𝑃𝑁 ) )