| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow1.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 3 |
|
sylow1.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 4 |
|
sylow1.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
sylow1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
|
sylow1.d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 7 |
|
sylow1lem.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 8 |
|
sylow1lem.s |
⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } |
| 9 |
|
sylow1lem.m |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 10 |
|
sylow1lem3.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
| 11 |
|
sylow1lem4.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 12 |
|
sylow1lem4.h |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐵 ) = 𝐵 } |
| 13 |
|
sylow1lem5.l |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 14 |
1 2 3 4 5 6 7 8 9
|
sylow1lem2 |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |
| 15 |
1 12
|
gastacl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
14 11 15
|
syl2anc |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12
|
sylow1lem4 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 18 |
10 1
|
gaorber |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) → ∼ Er 𝑆 ) |
| 19 |
14 18
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑆 ) |
| 20 |
|
erdm |
⊢ ( ∼ Er 𝑆 → dom ∼ = 𝑆 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → dom ∼ = 𝑆 ) |
| 22 |
11 21
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ∼ ) |
| 23 |
|
ecdmn0 |
⊢ ( 𝐵 ∈ dom ∼ ↔ [ 𝐵 ] ∼ ≠ ∅ ) |
| 24 |
22 23
|
sylib |
⊢ ( 𝜑 → [ 𝐵 ] ∼ ≠ ∅ ) |
| 25 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
| 26 |
3 25
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
| 27 |
8
|
ssrab3 |
⊢ 𝑆 ⊆ 𝒫 𝑋 |
| 28 |
|
ssfi |
⊢ ( ( 𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋 ) → 𝑆 ∈ Fin ) |
| 29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 30 |
19
|
ecss |
⊢ ( 𝜑 → [ 𝐵 ] ∼ ⊆ 𝑆 ) |
| 31 |
29 30
|
ssfid |
⊢ ( 𝜑 → [ 𝐵 ] ∼ ∈ Fin ) |
| 32 |
|
hashnncl |
⊢ ( [ 𝐵 ] ∼ ∈ Fin → ( ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℕ ↔ [ 𝐵 ] ∼ ≠ ∅ ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℕ ↔ [ 𝐵 ] ∼ ≠ ∅ ) ) |
| 34 |
24 33
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℕ ) |
| 35 |
4 34
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ∈ ℕ0 ) |
| 36 |
35
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ∈ ℝ ) |
| 37 |
5
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 38 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 39 |
2 38
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 40 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 41 |
3 40
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 42 |
39 41
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 43 |
4 42
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 44 |
43
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
| 45 |
|
leaddsub |
⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 46 |
36 37 44 45
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 47 |
13 46
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 48 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐻 ) = ( 𝐺 ~QG 𝐻 ) |
| 49 |
1 12 48 10
|
orbsta2 |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) |
| 50 |
14 11 3 49
|
syl21anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) ) |
| 52 |
34
|
nnzd |
⊢ ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℤ ) |
| 53 |
34
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ∼ ) ≠ 0 ) |
| 54 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 55 |
54
|
subg0cl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 56 |
16 55
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 57 |
56
|
ne0d |
⊢ ( 𝜑 → 𝐻 ≠ ∅ ) |
| 58 |
12
|
ssrab3 |
⊢ 𝐻 ⊆ 𝑋 |
| 59 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝐻 ⊆ 𝑋 ) → 𝐻 ∈ Fin ) |
| 60 |
3 58 59
|
sylancl |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 61 |
|
hashnncl |
⊢ ( 𝐻 ∈ Fin → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) |
| 63 |
57 62
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ ) |
| 64 |
63
|
nnzd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
| 65 |
63
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≠ 0 ) |
| 66 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℤ ∧ ( ♯ ‘ [ 𝐵 ] ∼ ) ≠ 0 ) ∧ ( ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 67 |
4 52 53 64 65 66
|
syl122anc |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 68 |
51 67
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 69 |
47 68
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 70 |
4 63
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ∈ ℕ0 ) |
| 71 |
70
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ∈ ℝ ) |
| 72 |
37 71 36
|
leadd2d |
⊢ ( 𝜑 → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) ) |
| 73 |
69 72
|
mpbird |
⊢ ( 𝜑 → 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) |
| 74 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) ) |
| 75 |
4 64 5 74
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) ) |
| 76 |
73 75
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) |
| 77 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 78 |
4 77
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 79 |
78 5
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 80 |
79
|
nnzd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) |
| 81 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ∈ ℕ ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) |
| 82 |
80 63 81
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) |
| 83 |
76 82
|
mpd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) |
| 84 |
|
hashcl |
⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 85 |
60 84
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 86 |
85
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℝ ) |
| 87 |
79
|
nnred |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
| 88 |
86 87
|
letri3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ∧ ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) ) |
| 89 |
17 83 88
|
mpbir2and |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 90 |
|
fveqeq2 |
⊢ ( ℎ = 𝐻 → ( ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 91 |
90
|
rspcev |
⊢ ( ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ) → ∃ ℎ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ) |
| 92 |
16 89 91
|
syl2anc |
⊢ ( 𝜑 → ∃ ℎ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ) |