Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow2.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
sylow2.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) |
4 |
|
sylow2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ) |
5 |
|
sylow2.a |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
sylow2.d |
⊢ − = ( -g ‘ 𝐺 ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → 𝑋 ∈ Fin ) |
8 |
|
slwsubg |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → 𝑔 ∈ 𝑋 ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) |
12 |
1 5 6 11
|
conjsubg |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔 ∈ 𝑋 ) → ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
13 |
9 10 12
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
14 |
1
|
subgss |
⊢ ( ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ⊆ 𝑋 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ⊆ 𝑋 ) |
16 |
7 15
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ∈ Fin ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
18 |
1 2 3
|
slwhash |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
19 |
1 2 4
|
slwhash |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
20 |
18 19
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ 𝐾 ) ) |
21 |
|
slwsubg |
⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
22 |
3 21
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
23 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝑋 ) |
25 |
2 24
|
ssfid |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
26 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
27 |
9 26
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
28 |
2 27
|
ssfid |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
29 |
|
hashen |
⊢ ( ( 𝐻 ∈ Fin ∧ 𝐾 ∈ Fin ) → ( ( ♯ ‘ 𝐻 ) = ( ♯ ‘ 𝐾 ) ↔ 𝐻 ≈ 𝐾 ) ) |
30 |
25 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) = ( ♯ ‘ 𝐾 ) ↔ 𝐻 ≈ 𝐾 ) ) |
31 |
20 30
|
mpbid |
⊢ ( 𝜑 → 𝐻 ≈ 𝐾 ) |
32 |
1 5 6 11
|
conjsubgen |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔 ∈ 𝑋 ) → 𝐾 ≈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
33 |
9 10 32
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → 𝐾 ≈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
34 |
|
entr |
⊢ ( ( 𝐻 ≈ 𝐾 ∧ 𝐾 ≈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) → 𝐻 ≈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
35 |
31 33 34
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → 𝐻 ≈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
36 |
|
fisseneq |
⊢ ( ( ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ∈ Fin ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ∧ 𝐻 ≈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) → 𝐻 = ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
37 |
16 17 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) → 𝐻 = ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
38 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐻 ) = ( 𝐺 ↾s 𝐻 ) |
39 |
38
|
slwpgp |
⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ) |
40 |
3 39
|
syl |
⊢ ( 𝜑 → 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ) |
41 |
1 2 22 9 5 40 19 6
|
sylow2b |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
42 |
37 41
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝑋 𝐻 = ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |