Metamath Proof Explorer


Theorem sylow2

Description: Sylow's second theorem. See also sylow2b for the "hard" part of the proof. Any two Sylow P -subgroups are conjugate to one another, and hence the same size, namely P ^ ( P pCnt | X | ) (see fislw ). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2.x 𝑋 = ( Base ‘ 𝐺 )
sylow2.f ( 𝜑𝑋 ∈ Fin )
sylow2.h ( 𝜑𝐻 ∈ ( 𝑃 pSyl 𝐺 ) )
sylow2.k ( 𝜑𝐾 ∈ ( 𝑃 pSyl 𝐺 ) )
sylow2.a + = ( +g𝐺 )
sylow2.d = ( -g𝐺 )
Assertion sylow2 ( 𝜑 → ∃ 𝑔𝑋 𝐻 = ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 sylow2.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2.f ( 𝜑𝑋 ∈ Fin )
3 sylow2.h ( 𝜑𝐻 ∈ ( 𝑃 pSyl 𝐺 ) )
4 sylow2.k ( 𝜑𝐾 ∈ ( 𝑃 pSyl 𝐺 ) )
5 sylow2.a + = ( +g𝐺 )
6 sylow2.d = ( -g𝐺 )
7 2 adantr ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → 𝑋 ∈ Fin )
8 slwsubg ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
9 4 8 syl ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
10 simprl ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → 𝑔𝑋 )
11 eqid ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) = ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) )
12 1 5 6 11 conjsubg ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔𝑋 ) → ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
13 9 10 12 syl2an2r ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
14 1 subgss ( ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ⊆ 𝑋 )
15 13 14 syl ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ⊆ 𝑋 )
16 7 15 ssfid ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ∈ Fin )
17 simprr ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
18 1 2 3 slwhash ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
19 1 2 4 slwhash ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
20 18 19 eqtr4d ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ 𝐾 ) )
21 slwsubg ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
22 3 21 syl ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
23 1 subgss ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻𝑋 )
24 22 23 syl ( 𝜑𝐻𝑋 )
25 2 24 ssfid ( 𝜑𝐻 ∈ Fin )
26 1 subgss ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾𝑋 )
27 9 26 syl ( 𝜑𝐾𝑋 )
28 2 27 ssfid ( 𝜑𝐾 ∈ Fin )
29 hashen ( ( 𝐻 ∈ Fin ∧ 𝐾 ∈ Fin ) → ( ( ♯ ‘ 𝐻 ) = ( ♯ ‘ 𝐾 ) ↔ 𝐻𝐾 ) )
30 25 28 29 syl2anc ( 𝜑 → ( ( ♯ ‘ 𝐻 ) = ( ♯ ‘ 𝐾 ) ↔ 𝐻𝐾 ) )
31 20 30 mpbid ( 𝜑𝐻𝐾 )
32 1 5 6 11 conjsubgen ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔𝑋 ) → 𝐾 ≈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
33 9 10 32 syl2an2r ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → 𝐾 ≈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
34 entr ( ( 𝐻𝐾𝐾 ≈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) → 𝐻 ≈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
35 31 33 34 syl2an2r ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → 𝐻 ≈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
36 fisseneq ( ( ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ∈ Fin ∧ 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ∧ 𝐻 ≈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) → 𝐻 = ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
37 16 17 35 36 syl3anc ( ( 𝜑 ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) → 𝐻 = ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
38 eqid ( 𝐺s 𝐻 ) = ( 𝐺s 𝐻 )
39 38 slwpgp ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 pGrp ( 𝐺s 𝐻 ) )
40 3 39 syl ( 𝜑𝑃 pGrp ( 𝐺s 𝐻 ) )
41 1 2 22 9 5 40 19 6 sylow2b ( 𝜑 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
42 37 41 reximddv ( 𝜑 → ∃ 𝑔𝑋 𝐻 = ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )