| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2a.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow2a.m |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
| 3 |
|
sylow2a.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
| 4 |
|
sylow2a.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 5 |
|
sylow2a.y |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
| 6 |
|
sylow2a.z |
⊢ 𝑍 = { 𝑢 ∈ 𝑌 ∣ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 } |
| 7 |
|
sylow2a.r |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
| 8 |
1 2 3 4 5 6 7
|
sylow2alem2 |
⊢ ( 𝜑 → 𝑃 ∥ Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) |
| 9 |
|
inass |
⊢ ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∩ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) = ( ( 𝑌 / ∼ ) ∩ ( 𝒫 𝑍 ∩ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) ) |
| 10 |
|
disjdif |
⊢ ( 𝒫 𝑍 ∩ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) = ∅ |
| 11 |
10
|
ineq2i |
⊢ ( ( 𝑌 / ∼ ) ∩ ( 𝒫 𝑍 ∩ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) ) = ( ( 𝑌 / ∼ ) ∩ ∅ ) |
| 12 |
|
in0 |
⊢ ( ( 𝑌 / ∼ ) ∩ ∅ ) = ∅ |
| 13 |
9 11 12
|
3eqtri |
⊢ ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∩ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) = ∅ |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∩ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) = ∅ ) |
| 15 |
|
inundif |
⊢ ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∪ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) = ( 𝑌 / ∼ ) |
| 16 |
15
|
eqcomi |
⊢ ( 𝑌 / ∼ ) = ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∪ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑌 / ∼ ) = ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∪ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) ) |
| 18 |
|
pwfi |
⊢ ( 𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin ) |
| 19 |
5 18
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑌 ∈ Fin ) |
| 20 |
7 1
|
gaorber |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∼ Er 𝑌 ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑌 ) |
| 22 |
21
|
qsss |
⊢ ( 𝜑 → ( 𝑌 / ∼ ) ⊆ 𝒫 𝑌 ) |
| 23 |
19 22
|
ssfid |
⊢ ( 𝜑 → ( 𝑌 / ∼ ) ∈ Fin ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑌 ∈ Fin ) |
| 25 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑧 ∈ 𝒫 𝑌 ) |
| 26 |
25
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑧 ⊆ 𝑌 ) |
| 27 |
24 26
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑧 ∈ Fin ) |
| 28 |
|
hashcl |
⊢ ( 𝑧 ∈ Fin → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
| 30 |
29
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℂ ) |
| 31 |
14 17 23 30
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑧 ∈ ( 𝑌 / ∼ ) ( ♯ ‘ 𝑧 ) = ( Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) + Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) ) |
| 32 |
21 5
|
qshash |
⊢ ( 𝜑 → ( ♯ ‘ 𝑌 ) = Σ 𝑧 ∈ ( 𝑌 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
| 33 |
|
inss1 |
⊢ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ⊆ ( 𝑌 / ∼ ) |
| 34 |
|
ssfi |
⊢ ( ( ( 𝑌 / ∼ ) ∈ Fin ∧ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ⊆ ( 𝑌 / ∼ ) ) → ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∈ Fin ) |
| 35 |
23 33 34
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∈ Fin ) |
| 36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 37 |
|
fsumconst |
⊢ ( ( ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) 1 = ( ( ♯ ‘ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) · 1 ) ) |
| 38 |
35 36 37
|
sylancl |
⊢ ( 𝜑 → Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) 1 = ( ( ♯ ‘ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) · 1 ) ) |
| 39 |
|
elin |
⊢ ( 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ↔ ( 𝑧 ∈ ( 𝑌 / ∼ ) ∧ 𝑧 ∈ 𝒫 𝑍 ) ) |
| 40 |
|
eqid |
⊢ ( 𝑌 / ∼ ) = ( 𝑌 / ∼ ) |
| 41 |
|
sseq1 |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ⊆ 𝑍 ↔ 𝑧 ⊆ 𝑍 ) ) |
| 42 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝑍 ↔ 𝑧 ⊆ 𝑍 ) |
| 43 |
41 42
|
bitr4di |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ⊆ 𝑍 ↔ 𝑧 ∈ 𝒫 𝑍 ) ) |
| 44 |
|
breq1 |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ≈ 1o ↔ 𝑧 ≈ 1o ) ) |
| 45 |
43 44
|
imbi12d |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( ( [ 𝑤 ] ∼ ⊆ 𝑍 → [ 𝑤 ] ∼ ≈ 1o ) ↔ ( 𝑧 ∈ 𝒫 𝑍 → 𝑧 ≈ 1o ) ) ) |
| 46 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ∼ Er 𝑌 ) |
| 47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ 𝑌 ) |
| 48 |
46 47
|
erref |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∼ 𝑤 ) |
| 49 |
|
vex |
⊢ 𝑤 ∈ V |
| 50 |
49 49
|
elec |
⊢ ( 𝑤 ∈ [ 𝑤 ] ∼ ↔ 𝑤 ∼ 𝑤 ) |
| 51 |
48 50
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ [ 𝑤 ] ∼ ) |
| 52 |
|
ssel |
⊢ ( [ 𝑤 ] ∼ ⊆ 𝑍 → ( 𝑤 ∈ [ 𝑤 ] ∼ → 𝑤 ∈ 𝑍 ) ) |
| 53 |
51 52
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( [ 𝑤 ] ∼ ⊆ 𝑍 → 𝑤 ∈ 𝑍 ) ) |
| 54 |
1 2 3 4 5 6 7
|
sylow2alem1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → [ 𝑤 ] ∼ = { 𝑤 } ) |
| 55 |
49
|
ensn1 |
⊢ { 𝑤 } ≈ 1o |
| 56 |
54 55
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → [ 𝑤 ] ∼ ≈ 1o ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑍 → [ 𝑤 ] ∼ ≈ 1o ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 ∈ 𝑍 → [ 𝑤 ] ∼ ≈ 1o ) ) |
| 59 |
53 58
|
syld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( [ 𝑤 ] ∼ ⊆ 𝑍 → [ 𝑤 ] ∼ ≈ 1o ) ) |
| 60 |
40 45 59
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → ( 𝑧 ∈ 𝒫 𝑍 → 𝑧 ≈ 1o ) ) |
| 61 |
60
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 / ∼ ) ∧ 𝑧 ∈ 𝒫 𝑍 ) ) → 𝑧 ≈ 1o ) |
| 62 |
39 61
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → 𝑧 ≈ 1o ) |
| 63 |
|
en1b |
⊢ ( 𝑧 ≈ 1o ↔ 𝑧 = { ∪ 𝑧 } ) |
| 64 |
62 63
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → 𝑧 = { ∪ 𝑧 } ) |
| 65 |
64
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) = ( ♯ ‘ { ∪ 𝑧 } ) ) |
| 66 |
|
vuniex |
⊢ ∪ 𝑧 ∈ V |
| 67 |
|
hashsng |
⊢ ( ∪ 𝑧 ∈ V → ( ♯ ‘ { ∪ 𝑧 } ) = 1 ) |
| 68 |
66 67
|
ax-mp |
⊢ ( ♯ ‘ { ∪ 𝑧 } ) = 1 |
| 69 |
65 68
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) = 1 ) |
| 70 |
69
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) = Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) 1 ) |
| 71 |
6
|
ssrab3 |
⊢ 𝑍 ⊆ 𝑌 |
| 72 |
|
ssfi |
⊢ ( ( 𝑌 ∈ Fin ∧ 𝑍 ⊆ 𝑌 ) → 𝑍 ∈ Fin ) |
| 73 |
5 71 72
|
sylancl |
⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
| 74 |
|
hashcl |
⊢ ( 𝑍 ∈ Fin → ( ♯ ‘ 𝑍 ) ∈ ℕ0 ) |
| 75 |
73 74
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑍 ) ∈ ℕ0 ) |
| 76 |
75
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑍 ) ∈ ℂ ) |
| 77 |
76
|
mulridd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑍 ) · 1 ) = ( ♯ ‘ 𝑍 ) ) |
| 78 |
6 5
|
rabexd |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 79 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑍 ↦ { 𝑤 } ) = ( 𝑤 ∈ 𝑍 ↦ { 𝑤 } ) |
| 80 |
7
|
relopabiv |
⊢ Rel ∼ |
| 81 |
|
relssdmrn |
⊢ ( Rel ∼ → ∼ ⊆ ( dom ∼ × ran ∼ ) ) |
| 82 |
80 81
|
ax-mp |
⊢ ∼ ⊆ ( dom ∼ × ran ∼ ) |
| 83 |
|
erdm |
⊢ ( ∼ Er 𝑌 → dom ∼ = 𝑌 ) |
| 84 |
21 83
|
syl |
⊢ ( 𝜑 → dom ∼ = 𝑌 ) |
| 85 |
84 5
|
eqeltrd |
⊢ ( 𝜑 → dom ∼ ∈ Fin ) |
| 86 |
|
errn |
⊢ ( ∼ Er 𝑌 → ran ∼ = 𝑌 ) |
| 87 |
21 86
|
syl |
⊢ ( 𝜑 → ran ∼ = 𝑌 ) |
| 88 |
87 5
|
eqeltrd |
⊢ ( 𝜑 → ran ∼ ∈ Fin ) |
| 89 |
85 88
|
xpexd |
⊢ ( 𝜑 → ( dom ∼ × ran ∼ ) ∈ V ) |
| 90 |
|
ssexg |
⊢ ( ( ∼ ⊆ ( dom ∼ × ran ∼ ) ∧ ( dom ∼ × ran ∼ ) ∈ V ) → ∼ ∈ V ) |
| 91 |
82 89 90
|
sylancr |
⊢ ( 𝜑 → ∼ ∈ V ) |
| 92 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ 𝑍 ) |
| 93 |
71 92
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ 𝑌 ) |
| 94 |
|
ecelqsg |
⊢ ( ( ∼ ∈ V ∧ 𝑤 ∈ 𝑌 ) → [ 𝑤 ] ∼ ∈ ( 𝑌 / ∼ ) ) |
| 95 |
91 93 94
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → [ 𝑤 ] ∼ ∈ ( 𝑌 / ∼ ) ) |
| 96 |
54 95
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { 𝑤 } ∈ ( 𝑌 / ∼ ) ) |
| 97 |
|
snelpwi |
⊢ ( 𝑤 ∈ 𝑍 → { 𝑤 } ∈ 𝒫 𝑍 ) |
| 98 |
97
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { 𝑤 } ∈ 𝒫 𝑍 ) |
| 99 |
96 98
|
elind |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { 𝑤 } ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) |
| 100 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) |
| 101 |
100
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → 𝑧 ∈ 𝒫 𝑍 ) |
| 102 |
101
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → 𝑧 ⊆ 𝑍 ) |
| 103 |
64 102
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → { ∪ 𝑧 } ⊆ 𝑍 ) |
| 104 |
66
|
snss |
⊢ ( ∪ 𝑧 ∈ 𝑍 ↔ { ∪ 𝑧 } ⊆ 𝑍 ) |
| 105 |
103 104
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → ∪ 𝑧 ∈ 𝑍 ) |
| 106 |
|
sneq |
⊢ ( 𝑤 = ∪ 𝑧 → { 𝑤 } = { ∪ 𝑧 } ) |
| 107 |
106
|
eqeq2d |
⊢ ( 𝑤 = ∪ 𝑧 → ( 𝑧 = { 𝑤 } ↔ 𝑧 = { ∪ 𝑧 } ) ) |
| 108 |
64 107
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) → ( 𝑤 = ∪ 𝑧 → 𝑧 = { 𝑤 } ) ) |
| 109 |
108
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) ) → ( 𝑤 = ∪ 𝑧 → 𝑧 = { 𝑤 } ) ) |
| 110 |
|
unieq |
⊢ ( 𝑧 = { 𝑤 } → ∪ 𝑧 = ∪ { 𝑤 } ) |
| 111 |
|
unisnv |
⊢ ∪ { 𝑤 } = 𝑤 |
| 112 |
110 111
|
eqtr2di |
⊢ ( 𝑧 = { 𝑤 } → 𝑤 = ∪ 𝑧 ) |
| 113 |
109 112
|
impbid1 |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) ) → ( 𝑤 = ∪ 𝑧 ↔ 𝑧 = { 𝑤 } ) ) |
| 114 |
79 99 105 113
|
f1o2d |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑍 ↦ { 𝑤 } ) : 𝑍 –1-1-onto→ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) |
| 115 |
78 114
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ 𝑍 ) = ( ♯ ‘ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) ) |
| 116 |
115
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑍 ) · 1 ) = ( ( ♯ ‘ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) · 1 ) ) |
| 117 |
77 116
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑍 ) = ( ( ♯ ‘ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ) · 1 ) ) |
| 118 |
38 70 117
|
3eqtr4rd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑍 ) = Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) |
| 119 |
118
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑍 ) + Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) = ( Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∩ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) + Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) ) |
| 120 |
31 32 119
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑍 ) + Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) = ( ♯ ‘ 𝑌 ) ) |
| 121 |
|
hashcl |
⊢ ( 𝑌 ∈ Fin → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
| 122 |
5 121
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
| 123 |
122
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑌 ) ∈ ℂ ) |
| 124 |
|
diffi |
⊢ ( ( 𝑌 / ∼ ) ∈ Fin → ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ∈ Fin ) |
| 125 |
23 124
|
syl |
⊢ ( 𝜑 → ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ∈ Fin ) |
| 126 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) → 𝑧 ∈ ( 𝑌 / ∼ ) ) |
| 127 |
126 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) ∈ ℂ ) |
| 128 |
125 127
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ∈ ℂ ) |
| 129 |
123 76 128
|
subaddd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑌 ) − ( ♯ ‘ 𝑍 ) ) = Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ↔ ( ( ♯ ‘ 𝑍 ) + Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) = ( ♯ ‘ 𝑌 ) ) ) |
| 130 |
120 129
|
mpbird |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑌 ) − ( ♯ ‘ 𝑍 ) ) = Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) |
| 131 |
8 130
|
breqtrrd |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ♯ ‘ 𝑌 ) − ( ♯ ‘ 𝑍 ) ) ) |