Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2a.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow2a.m |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
3 |
|
sylow2a.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
4 |
|
sylow2a.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
5 |
|
sylow2a.y |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
6 |
|
sylow2a.z |
⊢ 𝑍 = { 𝑢 ∈ 𝑌 ∣ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 } |
7 |
|
sylow2a.r |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
8 |
|
vex |
⊢ 𝑤 ∈ V |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → 𝐴 ∈ 𝑍 ) |
10 |
|
elecg |
⊢ ( ( 𝑤 ∈ V ∧ 𝐴 ∈ 𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝑤 ) ) |
11 |
8 9 10
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝑤 ) ) |
12 |
7
|
gaorb |
⊢ ( 𝐴 ∼ 𝑤 ↔ ( 𝐴 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝐴 ) = 𝑤 ) ) |
13 |
12
|
simp3bi |
⊢ ( 𝐴 ∼ 𝑤 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝐴 ) = 𝑤 ) |
14 |
|
oveq2 |
⊢ ( 𝑢 = 𝐴 → ( ℎ ⊕ 𝑢 ) = ( ℎ ⊕ 𝐴 ) ) |
15 |
|
id |
⊢ ( 𝑢 = 𝐴 → 𝑢 = 𝐴 ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑢 = 𝐴 → ( ( ℎ ⊕ 𝑢 ) = 𝑢 ↔ ( ℎ ⊕ 𝐴 ) = 𝐴 ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑢 = 𝐴 → ( ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ↔ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐴 ) ) |
18 |
17 6
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑍 ↔ ( 𝐴 ∈ 𝑌 ∧ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐴 ) ) |
19 |
9 18
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( 𝐴 ∈ 𝑌 ∧ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐴 ) ) |
20 |
19
|
simprd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐴 ) |
21 |
|
oveq1 |
⊢ ( ℎ = 𝑘 → ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) |
22 |
21
|
eqeq1d |
⊢ ( ℎ = 𝑘 → ( ( ℎ ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑘 ⊕ 𝐴 ) = 𝐴 ) ) |
23 |
22
|
rspccva |
⊢ ( ( ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐴 ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) = 𝐴 ) |
24 |
20 23
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) = 𝐴 ) |
25 |
|
eqeq1 |
⊢ ( ( 𝑘 ⊕ 𝐴 ) = 𝑤 → ( ( 𝑘 ⊕ 𝐴 ) = 𝐴 ↔ 𝑤 = 𝐴 ) ) |
26 |
24 25
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑘 ⊕ 𝐴 ) = 𝑤 → 𝑤 = 𝐴 ) ) |
27 |
26
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝐴 ) = 𝑤 → 𝑤 = 𝐴 ) ) |
28 |
13 27
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( 𝐴 ∼ 𝑤 → 𝑤 = 𝐴 ) ) |
29 |
11 28
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] ∼ → 𝑤 = 𝐴 ) ) |
30 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝐴 } ↔ 𝑤 = 𝐴 ) |
31 |
29 30
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] ∼ → 𝑤 ∈ { 𝐴 } ) ) |
32 |
31
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → [ 𝐴 ] ∼ ⊆ { 𝐴 } ) |
33 |
7 1
|
gaorber |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∼ Er 𝑌 ) |
34 |
2 33
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑌 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ∼ Er 𝑌 ) |
36 |
19
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → 𝐴 ∈ 𝑌 ) |
37 |
35 36
|
erref |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → 𝐴 ∼ 𝐴 ) |
38 |
|
elecg |
⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐴 ∈ 𝑍 ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
39 |
9 38
|
sylancom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
40 |
37 39
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → 𝐴 ∈ [ 𝐴 ] ∼ ) |
41 |
40
|
snssd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → { 𝐴 } ⊆ [ 𝐴 ] ∼ ) |
42 |
32 41
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑍 ) → [ 𝐴 ] ∼ = { 𝐴 } ) |