Metamath Proof Explorer


Theorem sylow2b

Description: Sylow's second theorem. Any P -group H is a subgroup of a conjugated P -group K of order P ^ n || ( #X ) with n maximal. This is usually stated under the assumption that K is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
sylow2b.xf ( 𝜑𝑋 ∈ Fin )
sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.a + = ( +g𝐺 )
sylow2b.hp ( 𝜑𝑃 pGrp ( 𝐺s 𝐻 ) )
sylow2b.kn ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
sylow2b.d = ( -g𝐺 )
Assertion sylow2b ( 𝜑 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2b.xf ( 𝜑𝑋 ∈ Fin )
3 sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
4 sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
5 sylow2b.a + = ( +g𝐺 )
6 sylow2b.hp ( 𝜑𝑃 pGrp ( 𝐺s 𝐻 ) )
7 sylow2b.kn ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
8 sylow2b.d = ( -g𝐺 )
9 eqid ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 )
10 oveq2 ( 𝑠 = 𝑧 → ( 𝑢 + 𝑠 ) = ( 𝑢 + 𝑧 ) )
11 10 cbvmptv ( 𝑠𝑣 ↦ ( 𝑢 + 𝑠 ) ) = ( 𝑧𝑣 ↦ ( 𝑢 + 𝑧 ) )
12 oveq1 ( 𝑢 = 𝑥 → ( 𝑢 + 𝑧 ) = ( 𝑥 + 𝑧 ) )
13 12 mpteq2dv ( 𝑢 = 𝑥 → ( 𝑧𝑣 ↦ ( 𝑢 + 𝑧 ) ) = ( 𝑧𝑣 ↦ ( 𝑥 + 𝑧 ) ) )
14 11 13 eqtrid ( 𝑢 = 𝑥 → ( 𝑠𝑣 ↦ ( 𝑢 + 𝑠 ) ) = ( 𝑧𝑣 ↦ ( 𝑥 + 𝑧 ) ) )
15 14 rneqd ( 𝑢 = 𝑥 → ran ( 𝑠𝑣 ↦ ( 𝑢 + 𝑠 ) ) = ran ( 𝑧𝑣 ↦ ( 𝑥 + 𝑧 ) ) )
16 mpteq1 ( 𝑣 = 𝑦 → ( 𝑧𝑣 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
17 16 rneqd ( 𝑣 = 𝑦 → ran ( 𝑧𝑣 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
18 15 17 cbvmpov ( 𝑢𝐻 , 𝑣 ∈ ( 𝑋 / ( 𝐺 ~QG 𝐾 ) ) ↦ ran ( 𝑠𝑣 ↦ ( 𝑢 + 𝑠 ) ) ) = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ( 𝐺 ~QG 𝐾 ) ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
19 1 2 3 4 5 9 18 6 7 8 sylow2blem3 ( 𝜑 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )