| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sylow2b.x | 
							⊢ 𝑋  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							sylow2b.xf | 
							⊢ ( 𝜑  →  𝑋  ∈  Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							sylow2b.h | 
							⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sylow2b.k | 
							⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sylow2b.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							sylow2b.hp | 
							⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							sylow2b.kn | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							sylow2b.d | 
							⊢  −   =  ( -g ‘ 𝐺 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ~QG  𝐾 )  =  ( 𝐺  ~QG  𝐾 )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑢  +  𝑠 )  =  ( 𝑢  +  𝑧 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							cbvmptv | 
							⊢ ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) )  =  ( 𝑧  ∈  𝑣  ↦  ( 𝑢  +  𝑧 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑢  =  𝑥  →  ( 𝑢  +  𝑧 )  =  ( 𝑥  +  𝑧 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							mpteq2dv | 
							⊢ ( 𝑢  =  𝑥  →  ( 𝑧  ∈  𝑣  ↦  ( 𝑢  +  𝑧 ) )  =  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							eqtrid | 
							⊢ ( 𝑢  =  𝑥  →  ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) )  =  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rneqd | 
							⊢ ( 𝑢  =  𝑥  →  ran  ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) )  =  ran  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							mpteq1 | 
							⊢ ( 𝑣  =  𝑦  →  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) )  =  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rneqd | 
							⊢ ( 𝑣  =  𝑦  →  ran  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) )  =  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							cbvmpov | 
							⊢ ( 𝑢  ∈  𝐻 ,  𝑣  ∈  ( 𝑋  /  ( 𝐺  ~QG  𝐾 ) )  ↦  ran  ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) ) )  =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /  ( 𝐺  ~QG  𝐾 ) )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 9 18 6 7 8
							 | 
							sylow2blem3 | 
							⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) )  |