Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2b.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow2b.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
sylow2b.h |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
sylow2b.k |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
sylow2b.a |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
sylow2b.hp |
⊢ ( 𝜑 → 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ) |
7 |
|
sylow2b.kn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
8 |
|
sylow2b.d |
⊢ − = ( -g ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
10 |
|
oveq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝑢 + 𝑠 ) = ( 𝑢 + 𝑧 ) ) |
11 |
10
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 + 𝑠 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( 𝑢 + 𝑧 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 + 𝑧 ) = ( 𝑥 + 𝑧 ) ) |
13 |
12
|
mpteq2dv |
⊢ ( 𝑢 = 𝑥 → ( 𝑧 ∈ 𝑣 ↦ ( 𝑢 + 𝑧 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 + 𝑧 ) ) ) |
14 |
11 13
|
eqtrid |
⊢ ( 𝑢 = 𝑥 → ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 + 𝑠 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 + 𝑧 ) ) ) |
15 |
14
|
rneqd |
⊢ ( 𝑢 = 𝑥 → ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 + 𝑠 ) ) = ran ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 + 𝑧 ) ) ) |
16 |
|
mpteq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
17 |
16
|
rneqd |
⊢ ( 𝑣 = 𝑦 → ran ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
18 |
15 17
|
cbvmpov |
⊢ ( 𝑢 ∈ 𝐻 , 𝑣 ∈ ( 𝑋 / ( 𝐺 ~QG 𝐾 ) ) ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 + 𝑠 ) ) ) = ( 𝑥 ∈ 𝐻 , 𝑦 ∈ ( 𝑋 / ( 𝐺 ~QG 𝐾 ) ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
19 |
1 2 3 4 5 9 18 6 7 8
|
sylow2blem3 |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |