| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sylow2b.x | 
							⊢ 𝑋  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							sylow2b.xf | 
							⊢ ( 𝜑  →  𝑋  ∈  Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							sylow2b.h | 
							⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sylow2b.k | 
							⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sylow2b.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							sylow2b.r | 
							⊢  ∼   =  ( 𝐺  ~QG  𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							sylow2b.m | 
							⊢  ·   =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝐻 )  | 
						
						
							| 9 | 
							
								6
							 | 
							ovexi | 
							⊢  ∼   ∈  V  | 
						
						
							| 10 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 )  | 
						
						
							| 11 | 
							
								
							 | 
							ecelqsg | 
							⊢ ( (  ∼   ∈  V  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  𝑦  =  [ 𝐶 ]  ∼  )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  𝑥  =  𝐵 )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  ( 𝑥  +  𝑧 )  =  ( 𝐵  +  𝑧 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							mpteq12dv | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  =  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rneqd | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  =  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ecexg | 
							⊢ (  ∼   ∈  V  →  [ 𝐶 ]  ∼   ∈  V )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							ax-mp | 
							⊢ [ 𝐶 ]  ∼   ∈  V  | 
						
						
							| 20 | 
							
								19
							 | 
							mptex | 
							⊢ ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ∈  V  | 
						
						
							| 21 | 
							
								20
							 | 
							rnex | 
							⊢ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ∈  V  | 
						
						
							| 22 | 
							
								17 7 21
							 | 
							ovmpoa | 
							⊢ ( ( 𝐵  ∈  𝐻  ∧  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  ( 𝐵  ·  [ 𝐶 ]  ∼  )  =  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 23 | 
							
								8 12 22
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  ·  [ 𝐶 ]  ∼  )  =  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 24 | 
							
								1 6
							 | 
							eqger | 
							⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 )  | 
						
						
							| 25 | 
							
								4 24
							 | 
							syl | 
							⊢ ( 𝜑  →   ∼   Er  𝑋 )  | 
						
						
							| 26 | 
							
								25
							 | 
							ecss | 
							⊢ ( 𝜑  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ⊆  𝑋 )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							ssfid | 
							⊢ ( 𝜑  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  Fin )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  Fin )  | 
						
						
							| 29 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 30 | 
							
								
							 | 
							elecg | 
							⊢ ( ( 𝑧  ∈  V  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↔  𝐶  ∼  𝑧 ) )  | 
						
						
							| 31 | 
							
								29 10 30
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↔  𝐶  ∼  𝑧 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							biimpa | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝑧  ∈  [ 𝐶 ]  ∼  )  →  𝐶  ∼  𝑧 )  | 
						
						
							| 33 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 34 | 
							
								3 33
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐺  ∈  Grp )  | 
						
						
							| 36 | 
							
								1
							 | 
							subgss | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 )  | 
						
						
							| 37 | 
							
								3 36
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐻  ⊆  𝑋 )  | 
						
						
							| 38 | 
							
								37
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐻  ⊆  𝑋 )  | 
						
						
							| 39 | 
							
								38 8
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝑋 )  | 
						
						
							| 40 | 
							
								1 5
							 | 
							grpcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 )  | 
						
						
							| 41 | 
							
								35 39 10 40
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 )  | 
						
						
							| 43 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  𝐺  ∈  Grp )  | 
						
						
							| 44 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  𝐵  ∈  𝑋 )  | 
						
						
							| 45 | 
							
								1
							 | 
							subgss | 
							⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 )  | 
						
						
							| 46 | 
							
								4 45
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐾  ⊆  𝑋 )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 48 | 
							
								1 47 5 6
							 | 
							eqgval | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐾  ⊆  𝑋 )  →  ( 𝐶  ∼  𝑧  ↔  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) )  | 
						
						
							| 49 | 
							
								34 46 48
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∼  𝑧  ↔  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐶  ∼  𝑧  ↔  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							biimpa | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							simp2d | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  𝑧  ∈  𝑋 )  | 
						
						
							| 53 | 
							
								1 5
							 | 
							grpcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝐵  +  𝑧 )  ∈  𝑋 )  | 
						
						
							| 54 | 
							
								43 44 52 53
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝑧 )  ∈  𝑋 )  | 
						
						
							| 55 | 
							
								1 47
							 | 
							grpinvcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐵  +  𝐶 )  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋 )  | 
						
						
							| 56 | 
							
								35 41 55
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋 )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋 )  | 
						
						
							| 58 | 
							
								1 5
							 | 
							grpass | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 59 | 
							
								43 57 44 52 58
							 | 
							syl13anc | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 60 | 
							
								1 5 47
							 | 
							grpinvadd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) )  | 
						
						
							| 61 | 
							
								35 39 10 60
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) )  | 
						
						
							| 62 | 
							
								1 47
							 | 
							grpinvcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 )  | 
						
						
							| 63 | 
							
								35 10 62
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 )  | 
						
						
							| 64 | 
							
								
							 | 
							eqid | 
							⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 )  | 
						
						
							| 65 | 
							
								1 5 47 64
							 | 
							grpsubval | 
							⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) )  | 
						
						
							| 66 | 
							
								63 39 65
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) )  | 
						
						
							| 67 | 
							
								61 66
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  +  𝐵 ) )  | 
						
						
							| 69 | 
							
								1 5 64
							 | 
							grpnpcan | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  +  𝐵 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) )  | 
						
						
							| 70 | 
							
								35 63 39 69
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  +  𝐵 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) )  | 
						
						
							| 71 | 
							
								68 70
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 ) )  | 
						
						
							| 74 | 
							
								59 73
							 | 
							eqtr3d | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 ) )  | 
						
						
							| 75 | 
							
								51
							 | 
							simp3d | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 )  | 
						
						
							| 77 | 
							
								1 47 5 6
							 | 
							eqgval | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐾  ⊆  𝑋 )  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) )  | 
						
						
							| 78 | 
							
								34 46 77
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) )  | 
						
						
							| 81 | 
							
								42 54 76 80
							 | 
							mpbir3and | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝐵  +  𝑧 )  ∈  V  | 
						
						
							| 83 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝐵  +  𝐶 )  ∈  V  | 
						
						
							| 84 | 
							
								82 83
							 | 
							elec | 
							⊢ ( ( 𝐵  +  𝑧 )  ∈  [ ( 𝐵  +  𝐶 ) ]  ∼   ↔  ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 ) )  | 
						
						
							| 85 | 
							
								81 84
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝑧 )  ∈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 86 | 
							
								32 85
							 | 
							syldan | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝑧  ∈  [ 𝐶 ]  ∼  )  →  ( 𝐵  +  𝑧 )  ∈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 87 | 
							
								86
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  ⟶ [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 88 | 
							
								87
							 | 
							frnd | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ⊆  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 89 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  | 
						
						
							| 90 | 
							
								1 5 89
							 | 
							grplmulf1o | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 )  | 
						
						
							| 91 | 
							
								35 39 90
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 )  | 
						
						
							| 92 | 
							
								
							 | 
							f1of1 | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1→ 𝑋 )  | 
						
						
							| 93 | 
							
								91 92
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1→ 𝑋 )  | 
						
						
							| 94 | 
							
								25
							 | 
							ecss | 
							⊢ ( 𝜑  →  [ 𝐶 ]  ∼   ⊆  𝑋 )  | 
						
						
							| 95 | 
							
								94
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ⊆  𝑋 )  | 
						
						
							| 96 | 
							
								
							 | 
							f1ssres | 
							⊢ ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1→ 𝑋  ∧  [ 𝐶 ]  ∼   ⊆  𝑋 )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 )  | 
						
						
							| 97 | 
							
								93 95 96
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 )  | 
						
						
							| 98 | 
							
								
							 | 
							resmpt | 
							⊢ ( [ 𝐶 ]  ∼   ⊆  𝑋  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  )  =  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  )  =  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋  ↔  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) )  | 
						
						
							| 100 | 
							
								95 98 99
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋  ↔  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) )  | 
						
						
							| 101 | 
							
								97 100
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 )  | 
						
						
							| 102 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1-onto→ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1-onto→ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 104 | 
							
								19
							 | 
							f1oen | 
							⊢ ( ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1-onto→ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  →  [ 𝐶 ]  ∼   ≈  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							ensym | 
							⊢ ( [ 𝐶 ]  ∼   ≈  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ 𝐶 ]  ∼  )  | 
						
						
							| 106 | 
							
								103 104 105
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ 𝐶 ]  ∼  )  | 
						
						
							| 107 | 
							
								4
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 108 | 
							
								1 6
							 | 
							eqgen | 
							⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  𝐾  ≈  [ 𝐶 ]  ∼  )  | 
						
						
							| 109 | 
							
								107 12 108
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐾  ≈  [ 𝐶 ]  ∼  )  | 
						
						
							| 110 | 
							
								
							 | 
							ensym | 
							⊢ ( 𝐾  ≈  [ 𝐶 ]  ∼   →  [ 𝐶 ]  ∼   ≈  𝐾 )  | 
						
						
							| 111 | 
							
								109 110
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ≈  𝐾 )  | 
						
						
							| 112 | 
							
								
							 | 
							ecelqsg | 
							⊢ ( (  ∼   ∈  V  ∧  ( 𝐵  +  𝐶 )  ∈  𝑋 )  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 113 | 
							
								9 41 112
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 114 | 
							
								1 6
							 | 
							eqgen | 
							⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  𝐾  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 115 | 
							
								107 113 114
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐾  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 116 | 
							
								
							 | 
							entr | 
							⊢ ( ( [ 𝐶 ]  ∼   ≈  𝐾  ∧  𝐾  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  →  [ 𝐶 ]  ∼   ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 117 | 
							
								111 115 116
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 118 | 
							
								
							 | 
							entr | 
							⊢ ( ( ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ 𝐶 ]  ∼   ∧  [ 𝐶 ]  ∼   ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 119 | 
							
								106 117 118
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 120 | 
							
								
							 | 
							fisseneq | 
							⊢ ( ( [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  Fin  ∧  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ⊆  [ ( 𝐵  +  𝐶 ) ]  ∼   ∧  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  =  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 121 | 
							
								28 88 119 120
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  =  [ ( 𝐵  +  𝐶 ) ]  ∼  )  | 
						
						
							| 122 | 
							
								23 121
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  ·  [ 𝐶 ]  ∼  )  =  [ ( 𝐵  +  𝐶 ) ]  ∼  )  |