Metamath Proof Explorer


Theorem sylow2blem1

Description: Lemma for sylow2b . Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
sylow2b.xf ( 𝜑𝑋 ∈ Fin )
sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.a + = ( +g𝐺 )
sylow2b.r = ( 𝐺 ~QG 𝐾 )
sylow2b.m · = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
Assertion sylow2blem1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝐵 · [ 𝐶 ] ) = [ ( 𝐵 + 𝐶 ) ] )

Proof

Step Hyp Ref Expression
1 sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2b.xf ( 𝜑𝑋 ∈ Fin )
3 sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
4 sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
5 sylow2b.a + = ( +g𝐺 )
6 sylow2b.r = ( 𝐺 ~QG 𝐾 )
7 sylow2b.m · = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
8 simp2 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐵𝐻 )
9 6 ovexi ∈ V
10 simp3 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐶𝑋 )
11 ecelqsg ( ( ∈ V ∧ 𝐶𝑋 ) → [ 𝐶 ] ∈ ( 𝑋 / ) )
12 9 10 11 sylancr ( ( 𝜑𝐵𝐻𝐶𝑋 ) → [ 𝐶 ] ∈ ( 𝑋 / ) )
13 simpr ( ( 𝑥 = 𝐵𝑦 = [ 𝐶 ] ) → 𝑦 = [ 𝐶 ] )
14 simpl ( ( 𝑥 = 𝐵𝑦 = [ 𝐶 ] ) → 𝑥 = 𝐵 )
15 14 oveq1d ( ( 𝑥 = 𝐵𝑦 = [ 𝐶 ] ) → ( 𝑥 + 𝑧 ) = ( 𝐵 + 𝑧 ) )
16 13 15 mpteq12dv ( ( 𝑥 = 𝐵𝑦 = [ 𝐶 ] ) → ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
17 16 rneqd ( ( 𝑥 = 𝐵𝑦 = [ 𝐶 ] ) → ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
18 ecexg ( ∈ V → [ 𝐶 ] ∈ V )
19 9 18 ax-mp [ 𝐶 ] ∈ V
20 19 mptex ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ∈ V
21 20 rnex ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ∈ V
22 17 7 21 ovmpoa ( ( 𝐵𝐻 ∧ [ 𝐶 ] ∈ ( 𝑋 / ) ) → ( 𝐵 · [ 𝐶 ] ) = ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
23 8 12 22 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝐵 · [ 𝐶 ] ) = ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
24 1 6 eqger ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝑋 )
25 4 24 syl ( 𝜑 Er 𝑋 )
26 25 ecss ( 𝜑 → [ ( 𝐵 + 𝐶 ) ] 𝑋 )
27 2 26 ssfid ( 𝜑 → [ ( 𝐵 + 𝐶 ) ] ∈ Fin )
28 27 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∈ Fin )
29 vex 𝑧 ∈ V
30 elecg ( ( 𝑧 ∈ V ∧ 𝐶𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] 𝐶 𝑧 ) )
31 29 10 30 sylancr ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] 𝐶 𝑧 ) )
32 31 biimpa ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝑧 ∈ [ 𝐶 ] ) → 𝐶 𝑧 )
33 subgrcl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
34 3 33 syl ( 𝜑𝐺 ∈ Grp )
35 34 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐺 ∈ Grp )
36 1 subgss ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻𝑋 )
37 3 36 syl ( 𝜑𝐻𝑋 )
38 37 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐻𝑋 )
39 38 8 sseldd ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐵𝑋 )
40 1 5 grpcl ( ( 𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 )
41 35 39 10 40 syl3anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 )
42 41 adantr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 )
43 35 adantr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → 𝐺 ∈ Grp )
44 39 adantr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → 𝐵𝑋 )
45 1 subgss ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾𝑋 )
46 4 45 syl ( 𝜑𝐾𝑋 )
47 eqid ( invg𝐺 ) = ( invg𝐺 )
48 1 47 5 6 eqgval ( ( 𝐺 ∈ Grp ∧ 𝐾𝑋 ) → ( 𝐶 𝑧 ↔ ( 𝐶𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) )
49 34 46 48 syl2anc ( 𝜑 → ( 𝐶 𝑧 ↔ ( 𝐶𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) )
50 49 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝐶 𝑧 ↔ ( 𝐶𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) )
51 50 biimpa ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( 𝐶𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) )
52 51 simp2d ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → 𝑧𝑋 )
53 1 5 grpcl ( ( 𝐺 ∈ Grp ∧ 𝐵𝑋𝑧𝑋 ) → ( 𝐵 + 𝑧 ) ∈ 𝑋 )
54 43 44 52 53 syl3anc ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( 𝐵 + 𝑧 ) ∈ 𝑋 )
55 1 47 grpinvcl ( ( 𝐺 ∈ Grp ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 )
56 35 41 55 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 )
57 56 adantr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 )
58 1 5 grpass ( ( 𝐺 ∈ Grp ∧ ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋𝐵𝑋𝑧𝑋 ) ) → ( ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) )
59 43 57 44 52 58 syl13anc ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) )
60 1 5 47 grpinvadd ( ( 𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋 ) → ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + ( ( invg𝐺 ) ‘ 𝐵 ) ) )
61 35 39 10 60 syl3anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + ( ( invg𝐺 ) ‘ 𝐵 ) ) )
62 1 47 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝐶𝑋 ) → ( ( invg𝐺 ) ‘ 𝐶 ) ∈ 𝑋 )
63 35 10 62 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( invg𝐺 ) ‘ 𝐶 ) ∈ 𝑋 )
64 eqid ( -g𝐺 ) = ( -g𝐺 )
65 1 5 47 64 grpsubval ( ( ( ( invg𝐺 ) ‘ 𝐶 ) ∈ 𝑋𝐵𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝐶 ) ( -g𝐺 ) 𝐵 ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + ( ( invg𝐺 ) ‘ 𝐵 ) ) )
66 63 39 65 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝐶 ) ( -g𝐺 ) 𝐵 ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + ( ( invg𝐺 ) ‘ 𝐵 ) ) )
67 61 66 eqtr4d ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) ( -g𝐺 ) 𝐵 ) )
68 67 oveq1d ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) = ( ( ( ( invg𝐺 ) ‘ 𝐶 ) ( -g𝐺 ) 𝐵 ) + 𝐵 ) )
69 1 5 64 grpnpcan ( ( 𝐺 ∈ Grp ∧ ( ( invg𝐺 ) ‘ 𝐶 ) ∈ 𝑋𝐵𝑋 ) → ( ( ( ( invg𝐺 ) ‘ 𝐶 ) ( -g𝐺 ) 𝐵 ) + 𝐵 ) = ( ( invg𝐺 ) ‘ 𝐶 ) )
70 35 63 39 69 syl3anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( ( ( invg𝐺 ) ‘ 𝐶 ) ( -g𝐺 ) 𝐵 ) + 𝐵 ) = ( ( invg𝐺 ) ‘ 𝐶 ) )
71 68 70 eqtrd ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) = ( ( invg𝐺 ) ‘ 𝐶 ) )
72 71 oveq1d ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) )
73 72 adantr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) )
74 59 73 eqtr3d ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) = ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) )
75 51 simp3d ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( ( invg𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 )
76 74 75 eqeltrd ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 )
77 1 47 5 6 eqgval ( ( 𝐺 ∈ Grp ∧ 𝐾𝑋 ) → ( ( 𝐵 + 𝐶 ) ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) )
78 34 46 77 syl2anc ( 𝜑 → ( ( 𝐵 + 𝐶 ) ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) )
79 78 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( 𝐵 + 𝐶 ) ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) )
80 79 adantr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( ( 𝐵 + 𝐶 ) ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) )
81 42 54 76 80 mpbir3and ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( 𝐵 + 𝐶 ) ( 𝐵 + 𝑧 ) )
82 ovex ( 𝐵 + 𝑧 ) ∈ V
83 ovex ( 𝐵 + 𝐶 ) ∈ V
84 82 83 elec ( ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ↔ ( 𝐵 + 𝐶 ) ( 𝐵 + 𝑧 ) )
85 81 84 sylibr ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝐶 𝑧 ) → ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] )
86 32 85 syldan ( ( ( 𝜑𝐵𝐻𝐶𝑋 ) ∧ 𝑧 ∈ [ 𝐶 ] ) → ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] )
87 86 fmpttd ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ⟶ [ ( 𝐵 + 𝐶 ) ] )
88 87 frnd ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ⊆ [ ( 𝐵 + 𝐶 ) ] )
89 eqid ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) = ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) )
90 1 5 89 grplmulf1o ( ( 𝐺 ∈ Grp ∧ 𝐵𝑋 ) → ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋1-1-onto𝑋 )
91 35 39 90 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋1-1-onto𝑋 )
92 f1of1 ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋1-1-onto𝑋 → ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋1-1𝑋 )
93 91 92 syl ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋1-1𝑋 )
94 25 ecss ( 𝜑 → [ 𝐶 ] 𝑋 )
95 94 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → [ 𝐶 ] 𝑋 )
96 f1ssres ( ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋1-1𝑋 ∧ [ 𝐶 ] 𝑋 ) → ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ) : [ 𝐶 ] 1-1𝑋 )
97 93 95 96 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ) : [ 𝐶 ] 1-1𝑋 )
98 resmpt ( [ 𝐶 ] 𝑋 → ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ) = ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
99 f1eq1 ( ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ) = ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) → ( ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ) : [ 𝐶 ] 1-1𝑋 ↔ ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1𝑋 ) )
100 95 98 99 3syl ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( ( ( 𝑧𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ) : [ 𝐶 ] 1-1𝑋 ↔ ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1𝑋 ) )
101 97 100 mpbid ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1𝑋 )
102 f1f1orn ( ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1𝑋 → ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
103 101 102 syl ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
104 19 f1oen ( ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] 1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) → [ 𝐶 ] ≈ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) )
105 ensym ( [ 𝐶 ] ≈ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] )
106 103 104 105 3syl ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] )
107 4 3ad2ant1 ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
108 1 6 eqgen ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ [ 𝐶 ] ∈ ( 𝑋 / ) ) → 𝐾 ≈ [ 𝐶 ] )
109 107 12 108 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐾 ≈ [ 𝐶 ] )
110 ensym ( 𝐾 ≈ [ 𝐶 ] → [ 𝐶 ] 𝐾 )
111 109 110 syl ( ( 𝜑𝐵𝐻𝐶𝑋 ) → [ 𝐶 ] 𝐾 )
112 ecelqsg ( ( ∈ V ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∈ ( 𝑋 / ) )
113 9 41 112 sylancr ( ( 𝜑𝐵𝐻𝐶𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∈ ( 𝑋 / ) )
114 1 6 eqgen ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ [ ( 𝐵 + 𝐶 ) ] ∈ ( 𝑋 / ) ) → 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] )
115 107 113 114 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] )
116 entr ( ( [ 𝐶 ] 𝐾𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ) → [ 𝐶 ] ≈ [ ( 𝐵 + 𝐶 ) ] )
117 111 115 116 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → [ 𝐶 ] ≈ [ ( 𝐵 + 𝐶 ) ] )
118 entr ( ( ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∧ [ 𝐶 ] ≈ [ ( 𝐵 + 𝐶 ) ] ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] )
119 106 117 118 syl2anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] )
120 fisseneq ( ( [ ( 𝐵 + 𝐶 ) ] ∈ Fin ∧ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ⊆ [ ( 𝐵 + 𝐶 ) ] ∧ ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) = [ ( 𝐵 + 𝐶 ) ] )
121 28 88 119 120 syl3anc ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ↦ ( 𝐵 + 𝑧 ) ) = [ ( 𝐵 + 𝐶 ) ] )
122 23 121 eqtrd ( ( 𝜑𝐵𝐻𝐶𝑋 ) → ( 𝐵 · [ 𝐶 ] ) = [ ( 𝐵 + 𝐶 ) ] )