Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2b.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow2b.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
sylow2b.h |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
sylow2b.k |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
sylow2b.a |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
sylow2b.r |
⊢ ∼ = ( 𝐺 ~QG 𝐾 ) |
7 |
|
sylow2b.m |
⊢ · = ( 𝑥 ∈ 𝐻 , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
8 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝐻 ) |
9 |
6
|
ovexi |
⊢ ∼ ∈ V |
10 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) |
11 |
|
ecelqsg |
⊢ ( ( ∼ ∈ V ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
13 |
|
simpr |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → 𝑦 = [ 𝐶 ] ∼ ) |
14 |
|
simpl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → 𝑥 = 𝐵 ) |
15 |
14
|
oveq1d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → ( 𝑥 + 𝑧 ) = ( 𝐵 + 𝑧 ) ) |
16 |
13 15
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
17 |
16
|
rneqd |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
18 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝐶 ] ∼ ∈ V ) |
19 |
9 18
|
ax-mp |
⊢ [ 𝐶 ] ∼ ∈ V |
20 |
19
|
mptex |
⊢ ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ∈ V |
21 |
20
|
rnex |
⊢ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ∈ V |
22 |
17 7 21
|
ovmpoa |
⊢ ( ( 𝐵 ∈ 𝐻 ∧ [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) → ( 𝐵 · [ 𝐶 ] ∼ ) = ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
23 |
8 12 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 · [ 𝐶 ] ∼ ) = ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
24 |
1 6
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
25 |
4 24
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑋 ) |
26 |
25
|
ecss |
⊢ ( 𝜑 → [ ( 𝐵 + 𝐶 ) ] ∼ ⊆ 𝑋 ) |
27 |
2 26
|
ssfid |
⊢ ( 𝜑 → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ Fin ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ Fin ) |
29 |
|
vex |
⊢ 𝑧 ∈ V |
30 |
|
elecg |
⊢ ( ( 𝑧 ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↔ 𝐶 ∼ 𝑧 ) ) |
31 |
29 10 30
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↔ 𝐶 ∼ 𝑧 ) ) |
32 |
31
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑧 ∈ [ 𝐶 ] ∼ ) → 𝐶 ∼ 𝑧 ) |
33 |
|
subgrcl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
36 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
37 |
3 36
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝑋 ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐻 ⊆ 𝑋 ) |
39 |
38 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
40 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
41 |
35 39 10 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
43 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → 𝐺 ∈ Grp ) |
44 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → 𝐵 ∈ 𝑋 ) |
45 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
46 |
4 45
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
47 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
48 |
1 47 5 6
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ 𝑋 ) → ( 𝐶 ∼ 𝑧 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) ) |
49 |
34 46 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∼ 𝑧 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) ) |
50 |
49
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 ∼ 𝑧 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) ) |
51 |
50
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) |
52 |
51
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → 𝑧 ∈ 𝑋 ) |
53 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐵 + 𝑧 ) ∈ 𝑋 ) |
54 |
43 44 52 53
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝑧 ) ∈ 𝑋 ) |
55 |
1 47
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ) |
56 |
35 41 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ) |
58 |
1 5
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ) |
59 |
43 57 44 52 58
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ) |
60 |
1 5 47
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
61 |
35 39 10 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
62 |
1 47
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
63 |
35 10 62
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
64 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
65 |
1 5 47 64
|
grpsubval |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
66 |
63 39 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
67 |
61 66
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) ) |
68 |
67
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) + 𝐵 ) ) |
69 |
1 5 64
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) + 𝐵 ) = ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) |
70 |
35 63 39 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) + 𝐵 ) = ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) |
71 |
68 70
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) = ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) |
72 |
71
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ) |
74 |
59 73
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ) |
75 |
51
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) |
76 |
74 75
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) |
77 |
1 47 5 6
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ 𝑋 ) → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
78 |
34 46 77
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
79 |
78
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
81 |
42 54 76 80
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ) |
82 |
|
ovex |
⊢ ( 𝐵 + 𝑧 ) ∈ V |
83 |
|
ovex |
⊢ ( 𝐵 + 𝐶 ) ∈ V |
84 |
82 83
|
elec |
⊢ ( ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ∼ ↔ ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ) |
85 |
81 84
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
86 |
32 85
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑧 ∈ [ 𝐶 ] ∼ ) → ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
87 |
86
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ ⟶ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
88 |
87
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ⊆ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
89 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) |
90 |
1 5 89
|
grplmulf1o |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
91 |
35 39 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
92 |
|
f1of1 |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
94 |
25
|
ecss |
⊢ ( 𝜑 → [ 𝐶 ] ∼ ⊆ 𝑋 ) |
95 |
94
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ⊆ 𝑋 ) |
96 |
|
f1ssres |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ∧ [ 𝐶 ] ∼ ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) |
97 |
93 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) |
98 |
|
resmpt |
⊢ ( [ 𝐶 ] ∼ ⊆ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) = ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
99 |
|
f1eq1 |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) = ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ↔ ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) ) |
100 |
95 98 99
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ↔ ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) ) |
101 |
97 100
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) |
102 |
|
f1f1orn |
⊢ ( ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
103 |
101 102
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
104 |
19
|
f1oen |
⊢ ( ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) → [ 𝐶 ] ∼ ≈ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
105 |
|
ensym |
⊢ ( [ 𝐶 ] ∼ ≈ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∼ ) |
106 |
103 104 105
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∼ ) |
107 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
108 |
1 6
|
eqgen |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) → 𝐾 ≈ [ 𝐶 ] ∼ ) |
109 |
107 12 108
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐾 ≈ [ 𝐶 ] ∼ ) |
110 |
|
ensym |
⊢ ( 𝐾 ≈ [ 𝐶 ] ∼ → [ 𝐶 ] ∼ ≈ 𝐾 ) |
111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ≈ 𝐾 ) |
112 |
|
ecelqsg |
⊢ ( ( ∼ ∈ V ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) |
113 |
9 41 112
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) |
114 |
1 6
|
eqgen |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ [ ( 𝐵 + 𝐶 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) → 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
115 |
107 113 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
116 |
|
entr |
⊢ ( ( [ 𝐶 ] ∼ ≈ 𝐾 ∧ 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) → [ 𝐶 ] ∼ ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
117 |
111 115 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
118 |
|
entr |
⊢ ( ( ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∼ ∧ [ 𝐶 ] ∼ ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
119 |
106 117 118
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
120 |
|
fisseneq |
⊢ ( ( [ ( 𝐵 + 𝐶 ) ] ∼ ∈ Fin ∧ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ⊆ [ ( 𝐵 + 𝐶 ) ] ∼ ∧ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) = [ ( 𝐵 + 𝐶 ) ] ∼ ) |
121 |
28 88 119 120
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) = [ ( 𝐵 + 𝐶 ) ] ∼ ) |
122 |
23 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 · [ 𝐶 ] ∼ ) = [ ( 𝐵 + 𝐶 ) ] ∼ ) |