| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sylow2b.x | 
							⊢ 𝑋  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							sylow2b.xf | 
							⊢ ( 𝜑  →  𝑋  ∈  Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							sylow2b.h | 
							⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sylow2b.k | 
							⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sylow2b.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							sylow2b.r | 
							⊢  ∼   =  ( 𝐺  ~QG  𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							sylow2b.m | 
							⊢  ·   =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 )  | 
						
						
							| 9 | 
							
								8
							 | 
							subggrp | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝐻 )  ∈  Grp )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  ↾s  𝐻 )  ∈  Grp )  | 
						
						
							| 11 | 
							
								
							 | 
							pwfi | 
							⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝒫  𝑋  ∈  Fin )  | 
						
						
							| 13 | 
							
								1 6
							 | 
							eqger | 
							⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							syl | 
							⊢ ( 𝜑  →   ∼   Er  𝑋 )  | 
						
						
							| 15 | 
							
								14
							 | 
							qsss | 
							⊢ ( 𝜑  →  ( 𝑋  /   ∼  )  ⊆  𝒫  𝑋 )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							ssexd | 
							⊢ ( 𝜑  →  ( 𝑋  /   ∼  )  ∈  V )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( 𝐺  ↾s  𝐻 )  ∈  Grp  ∧  ( 𝑋  /   ∼  )  ∈  V ) )  | 
						
						
							| 18 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 19 | 
							
								18
							 | 
							mptex | 
							⊢ ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  ∈  V  | 
						
						
							| 20 | 
							
								19
							 | 
							rnex | 
							⊢ ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  ∈  V  | 
						
						
							| 21 | 
							
								7 20
							 | 
							fnmpoi | 
							⊢  ·   Fn  ( 𝐻  ×  ( 𝑋  /   ∼  ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( 𝜑  →   ·   Fn  ( 𝐻  ×  ( 𝑋  /   ∼  ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑋  /   ∼  )  =  ( 𝑋  /   ∼  )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq2 | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑣  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  =  ( 𝑢  ·  𝑣 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eleq1d | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑣  →  ( ( 𝑢  ·  [ 𝑠 ]  ∼  )  ∈  ( 𝑋  /   ∼  )  ↔  ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) )  | 
						
						
							| 26 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  =  [ ( 𝑢  +  𝑠 ) ]  ∼  )  | 
						
						
							| 27 | 
							
								6
							 | 
							ovexi | 
							⊢  ∼   ∈  V  | 
						
						
							| 28 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 29 | 
							
								3 28
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  𝐺  ∈  Grp )  | 
						
						
							| 31 | 
							
								1
							 | 
							subgss | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 )  | 
						
						
							| 32 | 
							
								3 31
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐻  ⊆  𝑋 )  | 
						
						
							| 33 | 
							
								32
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  →  𝑢  ∈  𝑋 )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  𝑢  ∈  𝑋 )  | 
						
						
							| 35 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  𝑠  ∈  𝑋 )  | 
						
						
							| 36 | 
							
								1 5
							 | 
							grpcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝑋  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  +  𝑠 )  ∈  𝑋 )  | 
						
						
							| 37 | 
							
								30 34 35 36
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  +  𝑠 )  ∈  𝑋 )  | 
						
						
							| 38 | 
							
								
							 | 
							ecelqsg | 
							⊢ ( (  ∼   ∈  V  ∧  ( 𝑢  +  𝑠 )  ∈  𝑋 )  →  [ ( 𝑢  +  𝑠 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 39 | 
							
								27 37 38
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  [ ( 𝑢  +  𝑠 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 40 | 
							
								26 39
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							3expa | 
							⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 42 | 
							
								23 25 41
							 | 
							ectocld | 
							⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  ∧  𝑣  ∈  ( 𝑋  /   ∼  ) )  →  ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  →  ∀ 𝑣  ∈  ( 𝑋  /   ∼  ) ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝐻 ∀ 𝑣  ∈  ( 𝑋  /   ∼  ) ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) )  | 
						
						
							| 45 | 
							
								
							 | 
							ffnov | 
							⊢ (  ·  : ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ↔  (  ·   Fn  ( 𝐻  ×  ( 𝑋  /   ∼  ) )  ∧  ∀ 𝑢  ∈  𝐻 ∀ 𝑣  ∈  ( 𝑋  /   ∼  ) ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) )  | 
						
						
							| 46 | 
							
								22 44 45
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →   ·  : ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  ) )  | 
						
						
							| 47 | 
							
								8
							 | 
							subgbas | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 48 | 
							
								3 47
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							xpeq1d | 
							⊢ ( 𝜑  →  ( 𝐻  ×  ( 𝑋  /   ∼  ) )  =  ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							feq2d | 
							⊢ ( 𝜑  →  (  ·  : ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ↔   ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  ) ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							mpbid | 
							⊢ ( 𝜑  →   ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  ) )  | 
						
						
							| 52 | 
							
								
							 | 
							oveq2 | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							id | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  [ 𝑠 ]  ∼   =  𝑢 )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eqeq12d | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼   ↔  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							oveq2 | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							oveq2 | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( 𝑏  ·  [ 𝑠 ]  ∼  )  =  ( 𝑏  ·  𝑢 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							oveq2d | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							eqeq12d | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							2ralbidv | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) )  | 
						
						
							| 60 | 
							
								54 59
							 | 
							anbi12d | 
							⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼   ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) )  ↔  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝜑 )  | 
						
						
							| 62 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 64 | 
							
								63
							 | 
							subg0cl | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝐻 )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 0g ‘ 𝐺 )  ∈  𝐻 )  | 
						
						
							| 66 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝑠  ∈  𝑋 )  | 
						
						
							| 67 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							⊢ ( ( 𝜑  ∧  ( 0g ‘ 𝐺 )  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 0g ‘ 𝐺 )  +  𝑠 ) ]  ∼  )  | 
						
						
							| 68 | 
							
								61 65 66 67
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 0g ‘ 𝐺 )  +  𝑠 ) ]  ∼  )  | 
						
						
							| 69 | 
							
								8 63
							 | 
							subg0 | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 70 | 
							
								62 69
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  ·  [ 𝑠 ]  ∼  )  =  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  ) )  | 
						
						
							| 72 | 
							
								1 5 63
							 | 
							grplid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑠 )  =  𝑠 )  | 
						
						
							| 73 | 
							
								29 72
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑠 )  =  𝑠 )  | 
						
						
							| 74 | 
							
								73
							 | 
							eceq1d | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  [ ( ( 0g ‘ 𝐺 )  +  𝑠 ) ]  ∼   =  [ 𝑠 ]  ∼  )  | 
						
						
							| 75 | 
							
								68 71 74
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼  )  | 
						
						
							| 76 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 77 | 
							
								76 28
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝐺  ∈  Grp )  | 
						
						
							| 78 | 
							
								76 31
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝐻  ⊆  𝑋 )  | 
						
						
							| 79 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑎  ∈  𝐻 )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑎  ∈  𝑋 )  | 
						
						
							| 81 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑏  ∈  𝐻 )  | 
						
						
							| 82 | 
							
								78 81
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑏  ∈  𝑋 )  | 
						
						
							| 83 | 
							
								66
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑠  ∈  𝑋 )  | 
						
						
							| 84 | 
							
								1 5
							 | 
							grpass | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  →  ( ( 𝑎  +  𝑏 )  +  𝑠 )  =  ( 𝑎  +  ( 𝑏  +  𝑠 ) ) )  | 
						
						
							| 85 | 
							
								77 80 82 83 84
							 | 
							syl13anc | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎  +  𝑏 )  +  𝑠 )  =  ( 𝑎  +  ( 𝑏  +  𝑠 ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							eceq1d | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼   =  [ ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ]  ∼  )  | 
						
						
							| 87 | 
							
								61
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝜑 )  | 
						
						
							| 88 | 
							
								1 5
							 | 
							grpcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑏  ∈  𝑋  ∧  𝑠  ∈  𝑋 )  →  ( 𝑏  +  𝑠 )  ∈  𝑋 )  | 
						
						
							| 89 | 
							
								77 82 83 88
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑏  +  𝑠 )  ∈  𝑋 )  | 
						
						
							| 90 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  ( 𝑏  +  𝑠 )  ∈  𝑋 )  →  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  )  =  [ ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ]  ∼  )  | 
						
						
							| 91 | 
							
								87 79 89 90
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  )  =  [ ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ]  ∼  )  | 
						
						
							| 92 | 
							
								86 91
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼   =  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  ) )  | 
						
						
							| 93 | 
							
								5
							 | 
							subgcl | 
							⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  ( 𝑎  +  𝑏 )  ∈  𝐻 )  | 
						
						
							| 94 | 
							
								76 79 81 93
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎  +  𝑏 )  ∈  𝐻 )  | 
						
						
							| 95 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  +  𝑏 )  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼  )  | 
						
						
							| 96 | 
							
								87 94 83 95
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼  )  | 
						
						
							| 97 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑏  ·  [ 𝑠 ]  ∼  )  =  [ ( 𝑏  +  𝑠 ) ]  ∼  )  | 
						
						
							| 98 | 
							
								87 81 83 97
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑏  ·  [ 𝑠 ]  ∼  )  =  [ ( 𝑏  +  𝑠 ) ]  ∼  )  | 
						
						
							| 99 | 
							
								98
							 | 
							oveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  =  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  ) )  | 
						
						
							| 100 | 
							
								92 96 99
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							ralrimivva | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ∀ 𝑎  ∈  𝐻 ∀ 𝑏  ∈  𝐻 ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) )  | 
						
						
							| 102 | 
							
								62 47
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 103 | 
							
								8 5
							 | 
							ressplusg | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 104 | 
							
								3 103
							 | 
							syl | 
							⊢ ( 𝜑  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveqdr | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑎  +  𝑏 )  =  ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							eqeq1d | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) )  | 
						
						
							| 108 | 
							
								102 107
							 | 
							raleqbidv | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ∀ 𝑏  ∈  𝐻 ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) )  | 
						
						
							| 109 | 
							
								102 108
							 | 
							raleqbidv | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ∀ 𝑎  ∈  𝐻 ∀ 𝑏  ∈  𝐻 ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) )  | 
						
						
							| 110 | 
							
								101 109
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) )  | 
						
						
							| 111 | 
							
								75 110
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼   ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) )  | 
						
						
							| 112 | 
							
								23 60 111
							 | 
							ectocld | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑋  /   ∼  ) )  →  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( 𝑋  /   ∼  ) ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) )  | 
						
						
							| 114 | 
							
								51 113
							 | 
							jca | 
							⊢ ( 𝜑  →  (  ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ∧  ∀ 𝑢  ∈  ( 𝑋  /   ∼  ) ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 116 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( +g ‘ ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 117 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 118 | 
							
								115 116 117
							 | 
							isga | 
							⊢ (  ·   ∈  ( ( 𝐺  ↾s  𝐻 )  GrpAct  ( 𝑋  /   ∼  ) )  ↔  ( ( ( 𝐺  ↾s  𝐻 )  ∈  Grp  ∧  ( 𝑋  /   ∼  )  ∈  V )  ∧  (  ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ∧  ∀ 𝑢  ∈  ( 𝑋  /   ∼  ) ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) ) )  | 
						
						
							| 119 | 
							
								17 114 118
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →   ·   ∈  ( ( 𝐺  ↾s  𝐻 )  GrpAct  ( 𝑋  /   ∼  ) ) )  |