Metamath Proof Explorer


Theorem sylow2blem2

Description: Lemma for sylow2b . Left multiplication in a subgroup H is a group action on the set of all left cosets of K . (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
sylow2b.xf ( 𝜑𝑋 ∈ Fin )
sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.a + = ( +g𝐺 )
sylow2b.r = ( 𝐺 ~QG 𝐾 )
sylow2b.m · = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
Assertion sylow2blem2 ( 𝜑· ∈ ( ( 𝐺s 𝐻 ) GrpAct ( 𝑋 / ) ) )

Proof

Step Hyp Ref Expression
1 sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2b.xf ( 𝜑𝑋 ∈ Fin )
3 sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
4 sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
5 sylow2b.a + = ( +g𝐺 )
6 sylow2b.r = ( 𝐺 ~QG 𝐾 )
7 sylow2b.m · = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
8 eqid ( 𝐺s 𝐻 ) = ( 𝐺s 𝐻 )
9 8 subggrp ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺s 𝐻 ) ∈ Grp )
10 3 9 syl ( 𝜑 → ( 𝐺s 𝐻 ) ∈ Grp )
11 pwfi ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin )
12 2 11 sylib ( 𝜑 → 𝒫 𝑋 ∈ Fin )
13 1 6 eqger ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝑋 )
14 4 13 syl ( 𝜑 Er 𝑋 )
15 14 qsss ( 𝜑 → ( 𝑋 / ) ⊆ 𝒫 𝑋 )
16 12 15 ssexd ( 𝜑 → ( 𝑋 / ) ∈ V )
17 10 16 jca ( 𝜑 → ( ( 𝐺s 𝐻 ) ∈ Grp ∧ ( 𝑋 / ) ∈ V ) )
18 vex 𝑦 ∈ V
19 18 mptex ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ V
20 19 rnex ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ V
21 7 20 fnmpoi · Fn ( 𝐻 × ( 𝑋 / ) )
22 21 a1i ( 𝜑· Fn ( 𝐻 × ( 𝑋 / ) ) )
23 eqid ( 𝑋 / ) = ( 𝑋 / )
24 oveq2 ( [ 𝑠 ] = 𝑣 → ( 𝑢 · [ 𝑠 ] ) = ( 𝑢 · 𝑣 ) )
25 24 eleq1d ( [ 𝑠 ] = 𝑣 → ( ( 𝑢 · [ 𝑠 ] ) ∈ ( 𝑋 / ) ↔ ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ) ) )
26 1 2 3 4 5 6 7 sylow2blem1 ( ( 𝜑𝑢𝐻𝑠𝑋 ) → ( 𝑢 · [ 𝑠 ] ) = [ ( 𝑢 + 𝑠 ) ] )
27 6 ovexi ∈ V
28 subgrcl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
29 3 28 syl ( 𝜑𝐺 ∈ Grp )
30 29 3ad2ant1 ( ( 𝜑𝑢𝐻𝑠𝑋 ) → 𝐺 ∈ Grp )
31 1 subgss ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻𝑋 )
32 3 31 syl ( 𝜑𝐻𝑋 )
33 32 sselda ( ( 𝜑𝑢𝐻 ) → 𝑢𝑋 )
34 33 3adant3 ( ( 𝜑𝑢𝐻𝑠𝑋 ) → 𝑢𝑋 )
35 simp3 ( ( 𝜑𝑢𝐻𝑠𝑋 ) → 𝑠𝑋 )
36 1 5 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑢𝑋𝑠𝑋 ) → ( 𝑢 + 𝑠 ) ∈ 𝑋 )
37 30 34 35 36 syl3anc ( ( 𝜑𝑢𝐻𝑠𝑋 ) → ( 𝑢 + 𝑠 ) ∈ 𝑋 )
38 ecelqsg ( ( ∈ V ∧ ( 𝑢 + 𝑠 ) ∈ 𝑋 ) → [ ( 𝑢 + 𝑠 ) ] ∈ ( 𝑋 / ) )
39 27 37 38 sylancr ( ( 𝜑𝑢𝐻𝑠𝑋 ) → [ ( 𝑢 + 𝑠 ) ] ∈ ( 𝑋 / ) )
40 26 39 eqeltrd ( ( 𝜑𝑢𝐻𝑠𝑋 ) → ( 𝑢 · [ 𝑠 ] ) ∈ ( 𝑋 / ) )
41 40 3expa ( ( ( 𝜑𝑢𝐻 ) ∧ 𝑠𝑋 ) → ( 𝑢 · [ 𝑠 ] ) ∈ ( 𝑋 / ) )
42 23 25 41 ectocld ( ( ( 𝜑𝑢𝐻 ) ∧ 𝑣 ∈ ( 𝑋 / ) ) → ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ) )
43 42 ralrimiva ( ( 𝜑𝑢𝐻 ) → ∀ 𝑣 ∈ ( 𝑋 / ) ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ) )
44 43 ralrimiva ( 𝜑 → ∀ 𝑢𝐻𝑣 ∈ ( 𝑋 / ) ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ) )
45 ffnov ( · : ( 𝐻 × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) ↔ ( · Fn ( 𝐻 × ( 𝑋 / ) ) ∧ ∀ 𝑢𝐻𝑣 ∈ ( 𝑋 / ) ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ) ) )
46 22 44 45 sylanbrc ( 𝜑· : ( 𝐻 × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) )
47 8 subgbas ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 = ( Base ‘ ( 𝐺s 𝐻 ) ) )
48 3 47 syl ( 𝜑𝐻 = ( Base ‘ ( 𝐺s 𝐻 ) ) )
49 48 xpeq1d ( 𝜑 → ( 𝐻 × ( 𝑋 / ) ) = ( ( Base ‘ ( 𝐺s 𝐻 ) ) × ( 𝑋 / ) ) )
50 49 feq2d ( 𝜑 → ( · : ( 𝐻 × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) ↔ · : ( ( Base ‘ ( 𝐺s 𝐻 ) ) × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) ) )
51 46 50 mpbid ( 𝜑· : ( ( Base ‘ ( 𝐺s 𝐻 ) ) × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) )
52 oveq2 ( [ 𝑠 ] = 𝑢 → ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · [ 𝑠 ] ) = ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) )
53 id ( [ 𝑠 ] = 𝑢 → [ 𝑠 ] = 𝑢 )
54 52 53 eqeq12d ( [ 𝑠 ] = 𝑢 → ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · [ 𝑠 ] ) = [ 𝑠 ] ↔ ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) = 𝑢 ) )
55 oveq2 ( [ 𝑠 ] = 𝑢 → ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) )
56 oveq2 ( [ 𝑠 ] = 𝑢 → ( 𝑏 · [ 𝑠 ] ) = ( 𝑏 · 𝑢 ) )
57 56 oveq2d ( [ 𝑠 ] = 𝑢 → ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) )
58 55 57 eqeq12d ( [ 𝑠 ] = 𝑢 → ( ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ↔ ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) )
59 58 2ralbidv ( [ 𝑠 ] = 𝑢 → ( ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) )
60 54 59 anbi12d ( [ 𝑠 ] = 𝑢 → ( ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · [ 𝑠 ] ) = [ 𝑠 ] ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ) ↔ ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) )
61 simpl ( ( 𝜑𝑠𝑋 ) → 𝜑 )
62 3 adantr ( ( 𝜑𝑠𝑋 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
63 eqid ( 0g𝐺 ) = ( 0g𝐺 )
64 63 subg0cl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ 𝐻 )
65 62 64 syl ( ( 𝜑𝑠𝑋 ) → ( 0g𝐺 ) ∈ 𝐻 )
66 simpr ( ( 𝜑𝑠𝑋 ) → 𝑠𝑋 )
67 1 2 3 4 5 6 7 sylow2blem1 ( ( 𝜑 ∧ ( 0g𝐺 ) ∈ 𝐻𝑠𝑋 ) → ( ( 0g𝐺 ) · [ 𝑠 ] ) = [ ( ( 0g𝐺 ) + 𝑠 ) ] )
68 61 65 66 67 syl3anc ( ( 𝜑𝑠𝑋 ) → ( ( 0g𝐺 ) · [ 𝑠 ] ) = [ ( ( 0g𝐺 ) + 𝑠 ) ] )
69 8 63 subg0 ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) = ( 0g ‘ ( 𝐺s 𝐻 ) ) )
70 62 69 syl ( ( 𝜑𝑠𝑋 ) → ( 0g𝐺 ) = ( 0g ‘ ( 𝐺s 𝐻 ) ) )
71 70 oveq1d ( ( 𝜑𝑠𝑋 ) → ( ( 0g𝐺 ) · [ 𝑠 ] ) = ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · [ 𝑠 ] ) )
72 1 5 63 grplid ( ( 𝐺 ∈ Grp ∧ 𝑠𝑋 ) → ( ( 0g𝐺 ) + 𝑠 ) = 𝑠 )
73 29 72 sylan ( ( 𝜑𝑠𝑋 ) → ( ( 0g𝐺 ) + 𝑠 ) = 𝑠 )
74 73 eceq1d ( ( 𝜑𝑠𝑋 ) → [ ( ( 0g𝐺 ) + 𝑠 ) ] = [ 𝑠 ] )
75 68 71 74 3eqtr3d ( ( 𝜑𝑠𝑋 ) → ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · [ 𝑠 ] ) = [ 𝑠 ] )
76 62 adantr ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
77 76 28 syl ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝐺 ∈ Grp )
78 76 31 syl ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝐻𝑋 )
79 simprl ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝑎𝐻 )
80 78 79 sseldd ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝑎𝑋 )
81 simprr ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝑏𝐻 )
82 78 81 sseldd ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝑏𝑋 )
83 66 adantr ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝑠𝑋 )
84 1 5 grpass ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝑋𝑏𝑋𝑠𝑋 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑠 ) = ( 𝑎 + ( 𝑏 + 𝑠 ) ) )
85 77 80 82 83 84 syl13anc ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑠 ) = ( 𝑎 + ( 𝑏 + 𝑠 ) ) )
86 85 eceq1d ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] = [ ( 𝑎 + ( 𝑏 + 𝑠 ) ) ] )
87 61 adantr ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → 𝜑 )
88 1 5 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑏𝑋𝑠𝑋 ) → ( 𝑏 + 𝑠 ) ∈ 𝑋 )
89 77 82 83 88 syl3anc ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( 𝑏 + 𝑠 ) ∈ 𝑋 )
90 1 2 3 4 5 6 7 sylow2blem1 ( ( 𝜑𝑎𝐻 ∧ ( 𝑏 + 𝑠 ) ∈ 𝑋 ) → ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ) = [ ( 𝑎 + ( 𝑏 + 𝑠 ) ) ] )
91 87 79 89 90 syl3anc ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ) = [ ( 𝑎 + ( 𝑏 + 𝑠 ) ) ] )
92 86 91 eqtr4d ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] = ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ) )
93 5 subgcl ( ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎𝐻𝑏𝐻 ) → ( 𝑎 + 𝑏 ) ∈ 𝐻 )
94 76 79 81 93 syl3anc ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐻 )
95 1 2 3 4 5 6 7 sylow2blem1 ( ( 𝜑 ∧ ( 𝑎 + 𝑏 ) ∈ 𝐻𝑠𝑋 ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] )
96 87 94 83 95 syl3anc ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] )
97 1 2 3 4 5 6 7 sylow2blem1 ( ( 𝜑𝑏𝐻𝑠𝑋 ) → ( 𝑏 · [ 𝑠 ] ) = [ ( 𝑏 + 𝑠 ) ] )
98 87 81 83 97 syl3anc ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( 𝑏 · [ 𝑠 ] ) = [ ( 𝑏 + 𝑠 ) ] )
99 98 oveq2d ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) = ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ) )
100 92 96 99 3eqtr4d ( ( ( 𝜑𝑠𝑋 ) ∧ ( 𝑎𝐻𝑏𝐻 ) ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) )
101 100 ralrimivva ( ( 𝜑𝑠𝑋 ) → ∀ 𝑎𝐻𝑏𝐻 ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) )
102 62 47 syl ( ( 𝜑𝑠𝑋 ) → 𝐻 = ( Base ‘ ( 𝐺s 𝐻 ) ) )
103 8 5 ressplusg ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → + = ( +g ‘ ( 𝐺s 𝐻 ) ) )
104 3 103 syl ( 𝜑+ = ( +g ‘ ( 𝐺s 𝐻 ) ) )
105 104 oveqdr ( ( 𝜑𝑠𝑋 ) → ( 𝑎 + 𝑏 ) = ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) )
106 105 oveq1d ( ( 𝜑𝑠𝑋 ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) )
107 106 eqeq1d ( ( 𝜑𝑠𝑋 ) → ( ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ↔ ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ) )
108 102 107 raleqbidv ( ( 𝜑𝑠𝑋 ) → ( ∀ 𝑏𝐻 ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ↔ ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ) )
109 102 108 raleqbidv ( ( 𝜑𝑠𝑋 ) → ( ∀ 𝑎𝐻𝑏𝐻 ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ) )
110 101 109 mpbid ( ( 𝜑𝑠𝑋 ) → ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) )
111 75 110 jca ( ( 𝜑𝑠𝑋 ) → ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · [ 𝑠 ] ) = [ 𝑠 ] ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ) ) ) )
112 23 60 111 ectocld ( ( 𝜑𝑢 ∈ ( 𝑋 / ) ) → ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) )
113 112 ralrimiva ( 𝜑 → ∀ 𝑢 ∈ ( 𝑋 / ) ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) )
114 51 113 jca ( 𝜑 → ( · : ( ( Base ‘ ( 𝐺s 𝐻 ) ) × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) ∧ ∀ 𝑢 ∈ ( 𝑋 / ) ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) )
115 eqid ( Base ‘ ( 𝐺s 𝐻 ) ) = ( Base ‘ ( 𝐺s 𝐻 ) )
116 eqid ( +g ‘ ( 𝐺s 𝐻 ) ) = ( +g ‘ ( 𝐺s 𝐻 ) )
117 eqid ( 0g ‘ ( 𝐺s 𝐻 ) ) = ( 0g ‘ ( 𝐺s 𝐻 ) )
118 115 116 117 isga ( · ∈ ( ( 𝐺s 𝐻 ) GrpAct ( 𝑋 / ) ) ↔ ( ( ( 𝐺s 𝐻 ) ∈ Grp ∧ ( 𝑋 / ) ∈ V ) ∧ ( · : ( ( Base ‘ ( 𝐺s 𝐻 ) ) × ( 𝑋 / ) ) ⟶ ( 𝑋 / ) ∧ ∀ 𝑢 ∈ ( 𝑋 / ) ( ( ( 0g ‘ ( 𝐺s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) ) )
119 17 114 118 sylanbrc ( 𝜑· ∈ ( ( 𝐺s 𝐻 ) GrpAct ( 𝑋 / ) ) )