Metamath Proof Explorer


Theorem sylow2blem3

Description: Sylow's second theorem. Putting together the results of sylow2a and the orbit-stabilizer theorem to show that P does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some g e. X with h g K = g K for all h e. H . This implies that invg ( g ) h g e. K , so h is in the conjugated subgroup g K invg ( g ) . (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
sylow2b.xf ( 𝜑𝑋 ∈ Fin )
sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
sylow2b.a + = ( +g𝐺 )
sylow2b.r = ( 𝐺 ~QG 𝐾 )
sylow2b.m · = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
sylow2blem3.hp ( 𝜑𝑃 pGrp ( 𝐺s 𝐻 ) )
sylow2blem3.kn ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
sylow2blem3.d = ( -g𝐺 )
Assertion sylow2blem3 ( 𝜑 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 sylow2b.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2b.xf ( 𝜑𝑋 ∈ Fin )
3 sylow2b.h ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
4 sylow2b.k ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
5 sylow2b.a + = ( +g𝐺 )
6 sylow2b.r = ( 𝐺 ~QG 𝐾 )
7 sylow2b.m · = ( 𝑥𝐻 , 𝑦 ∈ ( 𝑋 / ) ↦ ran ( 𝑧𝑦 ↦ ( 𝑥 + 𝑧 ) ) )
8 sylow2blem3.hp ( 𝜑𝑃 pGrp ( 𝐺s 𝐻 ) )
9 sylow2blem3.kn ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
10 sylow2blem3.d = ( -g𝐺 )
11 pgpprm ( 𝑃 pGrp ( 𝐺s 𝐻 ) → 𝑃 ∈ ℙ )
12 8 11 syl ( 𝜑𝑃 ∈ ℙ )
13 subgrcl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
14 3 13 syl ( 𝜑𝐺 ∈ Grp )
15 1 grpbn0 ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ )
16 14 15 syl ( 𝜑𝑋 ≠ ∅ )
17 hashnncl ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) )
18 2 17 syl ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) )
19 16 18 mpbird ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ )
20 pcndvds2 ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ¬ 𝑃 ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) )
21 12 19 20 syl2anc ( 𝜑 → ¬ 𝑃 ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) )
22 1 6 4 2 lagsubg2 ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ) ) · ( ♯ ‘ 𝐾 ) ) )
23 22 oveq1d ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) = ( ( ( ♯ ‘ ( 𝑋 / ) ) · ( ♯ ‘ 𝐾 ) ) / ( ♯ ‘ 𝐾 ) ) )
24 9 oveq2d ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) = ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) )
25 pwfi ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin )
26 2 25 sylib ( 𝜑 → 𝒫 𝑋 ∈ Fin )
27 1 6 eqger ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝑋 )
28 4 27 syl ( 𝜑 Er 𝑋 )
29 28 qsss ( 𝜑 → ( 𝑋 / ) ⊆ 𝒫 𝑋 )
30 26 29 ssfid ( 𝜑 → ( 𝑋 / ) ∈ Fin )
31 hashcl ( ( 𝑋 / ) ∈ Fin → ( ♯ ‘ ( 𝑋 / ) ) ∈ ℕ0 )
32 30 31 syl ( 𝜑 → ( ♯ ‘ ( 𝑋 / ) ) ∈ ℕ0 )
33 32 nn0cnd ( 𝜑 → ( ♯ ‘ ( 𝑋 / ) ) ∈ ℂ )
34 eqid ( 0g𝐺 ) = ( 0g𝐺 )
35 34 subg0cl ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ 𝐾 )
36 4 35 syl ( 𝜑 → ( 0g𝐺 ) ∈ 𝐾 )
37 36 ne0d ( 𝜑𝐾 ≠ ∅ )
38 1 subgss ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾𝑋 )
39 4 38 syl ( 𝜑𝐾𝑋 )
40 2 39 ssfid ( 𝜑𝐾 ∈ Fin )
41 hashnncl ( 𝐾 ∈ Fin → ( ( ♯ ‘ 𝐾 ) ∈ ℕ ↔ 𝐾 ≠ ∅ ) )
42 40 41 syl ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∈ ℕ ↔ 𝐾 ≠ ∅ ) )
43 37 42 mpbird ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ )
44 43 nncnd ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℂ )
45 43 nnne0d ( 𝜑 → ( ♯ ‘ 𝐾 ) ≠ 0 )
46 33 44 45 divcan4d ( 𝜑 → ( ( ( ♯ ‘ ( 𝑋 / ) ) · ( ♯ ‘ 𝐾 ) ) / ( ♯ ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝑋 / ) ) )
47 23 24 46 3eqtr3d ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( ♯ ‘ ( 𝑋 / ) ) )
48 47 breq2d ( 𝜑 → ( 𝑃 ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ↔ 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ) ) ) )
49 21 48 mtbid ( 𝜑 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ) ) )
50 prmz ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ )
51 12 50 syl ( 𝜑𝑃 ∈ ℤ )
52 32 nn0zd ( 𝜑 → ( ♯ ‘ ( 𝑋 / ) ) ∈ ℤ )
53 ssrab2 { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ⊆ ( 𝑋 / )
54 ssfi ( ( ( 𝑋 / ) ∈ Fin ∧ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ⊆ ( 𝑋 / ) ) → { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin )
55 30 53 54 sylancl ( 𝜑 → { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin )
56 hashcl ( { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℕ0 )
57 55 56 syl ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℕ0 )
58 57 nn0zd ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℤ )
59 eqid ( Base ‘ ( 𝐺s 𝐻 ) ) = ( Base ‘ ( 𝐺s 𝐻 ) )
60 1 2 3 4 5 6 7 sylow2blem2 ( 𝜑· ∈ ( ( 𝐺s 𝐻 ) GrpAct ( 𝑋 / ) ) )
61 eqid ( 𝐺s 𝐻 ) = ( 𝐺s 𝐻 )
62 61 subgbas ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 = ( Base ‘ ( 𝐺s 𝐻 ) ) )
63 3 62 syl ( 𝜑𝐻 = ( Base ‘ ( 𝐺s 𝐻 ) ) )
64 1 subgss ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻𝑋 )
65 3 64 syl ( 𝜑𝐻𝑋 )
66 2 65 ssfid ( 𝜑𝐻 ∈ Fin )
67 63 66 eqeltrrd ( 𝜑 → ( Base ‘ ( 𝐺s 𝐻 ) ) ∈ Fin )
68 eqid { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 }
69 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( 𝑋 / ) ∧ ∃ 𝑔 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑔 · 𝑥 ) = 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( 𝑋 / ) ∧ ∃ 𝑔 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑔 · 𝑥 ) = 𝑦 ) }
70 59 60 8 67 30 68 69 sylow2a ( 𝜑𝑃 ∥ ( ( ♯ ‘ ( 𝑋 / ) ) − ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) )
71 dvdssub2 ( ( ( 𝑃 ∈ ℤ ∧ ( ♯ ‘ ( 𝑋 / ) ) ∈ ℤ ∧ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℤ ) ∧ 𝑃 ∥ ( ( ♯ ‘ ( 𝑋 / ) ) − ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ) ) ↔ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) )
72 51 52 58 70 71 syl31anc ( 𝜑 → ( 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ) ) ↔ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) )
73 49 72 mtbid ( 𝜑 → ¬ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) )
74 hasheq0 ( { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin → ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 ↔ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = ∅ ) )
75 55 74 syl ( 𝜑 → ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 ↔ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = ∅ ) )
76 dvds0 ( 𝑃 ∈ ℤ → 𝑃 ∥ 0 )
77 51 76 syl ( 𝜑𝑃 ∥ 0 )
78 breq2 ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 → ( 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ↔ 𝑃 ∥ 0 ) )
79 77 78 syl5ibrcom ( 𝜑 → ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 → 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) )
80 75 79 sylbird ( 𝜑 → ( { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = ∅ → 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) )
81 80 necon3bd ( 𝜑 → ( ¬ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) → { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ≠ ∅ ) )
82 73 81 mpd ( 𝜑 → { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ≠ ∅ )
83 rabn0 ( { 𝑧 ∈ ( 𝑋 / ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ≠ ∅ ↔ ∃ 𝑧 ∈ ( 𝑋 / ) ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 )
84 82 83 sylib ( 𝜑 → ∃ 𝑧 ∈ ( 𝑋 / ) ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 )
85 63 raleqdv ( 𝜑 → ( ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ↔ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 ) )
86 85 rexbidv ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑋 / ) ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ↔ ∃ 𝑧 ∈ ( 𝑋 / ) ∀ 𝑢 ∈ ( Base ‘ ( 𝐺s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 ) )
87 84 86 mpbird ( 𝜑 → ∃ 𝑧 ∈ ( 𝑋 / ) ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 )
88 vex 𝑧 ∈ V
89 88 elqs ( 𝑧 ∈ ( 𝑋 / ) ↔ ∃ 𝑔𝑋 𝑧 = [ 𝑔 ] )
90 simplrr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑧 = [ 𝑔 ] )
91 90 oveq2d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 · 𝑧 ) = ( 𝑢 · [ 𝑔 ] ) )
92 simprr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 · 𝑧 ) = 𝑧 )
93 simpll ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝜑 )
94 simprl ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑢𝐻 )
95 simplrl ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑔𝑋 )
96 1 2 3 4 5 6 7 sylow2blem1 ( ( 𝜑𝑢𝐻𝑔𝑋 ) → ( 𝑢 · [ 𝑔 ] ) = [ ( 𝑢 + 𝑔 ) ] )
97 93 94 95 96 syl3anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 · [ 𝑔 ] ) = [ ( 𝑢 + 𝑔 ) ] )
98 91 92 97 3eqtr3d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑧 = [ ( 𝑢 + 𝑔 ) ] )
99 90 98 eqtr3d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → [ 𝑔 ] = [ ( 𝑢 + 𝑔 ) ] )
100 28 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → Er 𝑋 )
101 100 95 erth ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 ( 𝑢 + 𝑔 ) ↔ [ 𝑔 ] = [ ( 𝑢 + 𝑔 ) ] ) )
102 99 101 mpbird ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑔 ( 𝑢 + 𝑔 ) )
103 14 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝐺 ∈ Grp )
104 39 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝐾𝑋 )
105 eqid ( invg𝐺 ) = ( invg𝐺 )
106 1 105 5 6 eqgval ( ( 𝐺 ∈ Grp ∧ 𝐾𝑋 ) → ( 𝑔 ( 𝑢 + 𝑔 ) ↔ ( 𝑔𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) ) )
107 103 104 106 syl2anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 ( 𝑢 + 𝑔 ) ↔ ( 𝑔𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) ) )
108 102 107 mpbid ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) )
109 108 simp3d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 )
110 oveq2 ( 𝑥 = ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) → ( 𝑔 + 𝑥 ) = ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) )
111 110 oveq1d ( 𝑥 = ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) → ( ( 𝑔 + 𝑥 ) 𝑔 ) = ( ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) 𝑔 ) )
112 eqid ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) = ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) )
113 ovex ( ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) 𝑔 ) ∈ V
114 111 112 113 fvmpt ( ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 → ( ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ‘ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = ( ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) 𝑔 ) )
115 109 114 syl ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ‘ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = ( ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) 𝑔 ) )
116 1 5 34 105 grprinv ( ( 𝐺 ∈ Grp ∧ 𝑔𝑋 ) → ( 𝑔 + ( ( invg𝐺 ) ‘ 𝑔 ) ) = ( 0g𝐺 ) )
117 103 95 116 syl2anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 + ( ( invg𝐺 ) ‘ 𝑔 ) ) = ( 0g𝐺 ) )
118 117 oveq1d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑔 + ( ( invg𝐺 ) ‘ 𝑔 ) ) + ( 𝑢 + 𝑔 ) ) = ( ( 0g𝐺 ) + ( 𝑢 + 𝑔 ) ) )
119 1 105 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑔𝑋 ) → ( ( invg𝐺 ) ‘ 𝑔 ) ∈ 𝑋 )
120 103 95 119 syl2anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( invg𝐺 ) ‘ 𝑔 ) ∈ 𝑋 )
121 65 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝐻𝑋 )
122 121 94 sseldd ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑢𝑋 )
123 1 5 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑢𝑋𝑔𝑋 ) → ( 𝑢 + 𝑔 ) ∈ 𝑋 )
124 103 122 95 123 syl3anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 + 𝑔 ) ∈ 𝑋 )
125 1 5 grpass ( ( 𝐺 ∈ Grp ∧ ( 𝑔𝑋 ∧ ( ( invg𝐺 ) ‘ 𝑔 ) ∈ 𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ) ) → ( ( 𝑔 + ( ( invg𝐺 ) ‘ 𝑔 ) ) + ( 𝑢 + 𝑔 ) ) = ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) )
126 103 95 120 124 125 syl13anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑔 + ( ( invg𝐺 ) ‘ 𝑔 ) ) + ( 𝑢 + 𝑔 ) ) = ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) )
127 1 5 34 grplid ( ( 𝐺 ∈ Grp ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ) → ( ( 0g𝐺 ) + ( 𝑢 + 𝑔 ) ) = ( 𝑢 + 𝑔 ) )
128 103 124 127 syl2anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 0g𝐺 ) + ( 𝑢 + 𝑔 ) ) = ( 𝑢 + 𝑔 ) )
129 118 126 128 3eqtr3d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = ( 𝑢 + 𝑔 ) )
130 129 oveq1d ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑔 + ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) 𝑔 ) = ( ( 𝑢 + 𝑔 ) 𝑔 ) )
131 1 5 10 grppncan ( ( 𝐺 ∈ Grp ∧ 𝑢𝑋𝑔𝑋 ) → ( ( 𝑢 + 𝑔 ) 𝑔 ) = 𝑢 )
132 103 122 95 131 syl3anc ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑢 + 𝑔 ) 𝑔 ) = 𝑢 )
133 115 130 132 3eqtrd ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ‘ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = 𝑢 )
134 ovex ( ( 𝑔 + 𝑥 ) 𝑔 ) ∈ V
135 134 112 fnmpti ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) Fn 𝐾
136 fnfvelrn ( ( ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) Fn 𝐾 ∧ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) → ( ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ‘ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
137 135 109 136 sylancr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ‘ ( ( ( invg𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
138 133 137 eqeltrrd ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ( 𝑢𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑢 ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
139 138 expr ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ 𝑢𝐻 ) → ( ( 𝑢 · 𝑧 ) = 𝑧𝑢 ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) )
140 139 ralimdva ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) → ( ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∀ 𝑢𝐻 𝑢 ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) )
141 140 imp ( ( ( 𝜑 ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) ∧ ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) → ∀ 𝑢𝐻 𝑢 ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
142 141 an32s ( ( ( 𝜑 ∧ ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) → ∀ 𝑢𝐻 𝑢 ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
143 dfss3 ( 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ↔ ∀ 𝑢𝐻 𝑢 ∈ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
144 142 143 sylibr ( ( ( 𝜑 ∧ ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) ∧ ( 𝑔𝑋𝑧 = [ 𝑔 ] ) ) → 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )
145 144 expr ( ( ( 𝜑 ∧ ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) ∧ 𝑔𝑋 ) → ( 𝑧 = [ 𝑔 ] 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) )
146 145 reximdva ( ( 𝜑 ∧ ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) → ( ∃ 𝑔𝑋 𝑧 = [ 𝑔 ] → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) )
147 146 ex ( 𝜑 → ( ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ( ∃ 𝑔𝑋 𝑧 = [ 𝑔 ] → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) )
148 147 com23 ( 𝜑 → ( ∃ 𝑔𝑋 𝑧 = [ 𝑔 ] → ( ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) )
149 89 148 syl5bi ( 𝜑 → ( 𝑧 ∈ ( 𝑋 / ) → ( ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) ) )
150 149 rexlimdv ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑋 / ) ∀ 𝑢𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) ) )
151 87 150 mpd ( 𝜑 → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝐾 ↦ ( ( 𝑔 + 𝑥 ) 𝑔 ) ) )