| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow2b.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
sylow2b.h |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
sylow2b.k |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
sylow2b.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 6 |
|
sylow2b.r |
⊢ ∼ = ( 𝐺 ~QG 𝐾 ) |
| 7 |
|
sylow2b.m |
⊢ · = ( 𝑥 ∈ 𝐻 , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 8 |
|
sylow2blem3.hp |
⊢ ( 𝜑 → 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ) |
| 9 |
|
sylow2blem3.kn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 10 |
|
sylow2blem3.d |
⊢ − = ( -g ‘ 𝐺 ) |
| 11 |
|
pgpprm |
⊢ ( 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) → 𝑃 ∈ ℙ ) |
| 12 |
8 11
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 13 |
|
subgrcl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 15 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 17 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 19 |
16 18
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 20 |
|
pcndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ¬ 𝑃 ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 21 |
12 19 20
|
syl2anc |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 22 |
1 6 4 2
|
lagsubg2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝐾 ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) = ( ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝐾 ) ) / ( ♯ ‘ 𝐾 ) ) ) |
| 24 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) = ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 25 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
| 26 |
2 25
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
| 27 |
1 6
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑋 ) |
| 29 |
28
|
qsss |
⊢ ( 𝜑 → ( 𝑋 / ∼ ) ⊆ 𝒫 𝑋 ) |
| 30 |
26 29
|
ssfid |
⊢ ( 𝜑 → ( 𝑋 / ∼ ) ∈ Fin ) |
| 31 |
|
hashcl |
⊢ ( ( 𝑋 / ∼ ) ∈ Fin → ( ♯ ‘ ( 𝑋 / ∼ ) ) ∈ ℕ0 ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ∼ ) ) ∈ ℕ0 ) |
| 33 |
32
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ∼ ) ) ∈ ℂ ) |
| 34 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 35 |
34
|
subg0cl |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐾 ) |
| 36 |
4 35
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐾 ) |
| 37 |
36
|
ne0d |
⊢ ( 𝜑 → 𝐾 ≠ ∅ ) |
| 38 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
| 39 |
4 38
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
| 40 |
2 39
|
ssfid |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
| 41 |
|
hashnncl |
⊢ ( 𝐾 ∈ Fin → ( ( ♯ ‘ 𝐾 ) ∈ ℕ ↔ 𝐾 ≠ ∅ ) ) |
| 42 |
40 41
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∈ ℕ ↔ 𝐾 ≠ ∅ ) ) |
| 43 |
37 42
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ ) |
| 44 |
43
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℂ ) |
| 45 |
43
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ≠ 0 ) |
| 46 |
33 44 45
|
divcan4d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝐾 ) ) / ( ♯ ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝑋 / ∼ ) ) ) |
| 47 |
23 24 46
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( ♯ ‘ ( 𝑋 / ∼ ) ) ) |
| 48 |
47
|
breq2d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ↔ 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ∼ ) ) ) ) |
| 49 |
21 48
|
mtbid |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ∼ ) ) ) |
| 50 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 51 |
12 50
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 52 |
32
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ∼ ) ) ∈ ℤ ) |
| 53 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ⊆ ( 𝑋 / ∼ ) |
| 54 |
|
ssfi |
⊢ ( ( ( 𝑋 / ∼ ) ∈ Fin ∧ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ⊆ ( 𝑋 / ∼ ) ) → { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin ) |
| 55 |
30 53 54
|
sylancl |
⊢ ( 𝜑 → { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin ) |
| 56 |
|
hashcl |
⊢ ( { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℕ0 ) |
| 57 |
55 56
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℕ0 ) |
| 58 |
57
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℤ ) |
| 59 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) |
| 60 |
1 2 3 4 5 6 7
|
sylow2blem2 |
⊢ ( 𝜑 → · ∈ ( ( 𝐺 ↾s 𝐻 ) GrpAct ( 𝑋 / ∼ ) ) ) |
| 61 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐻 ) = ( 𝐺 ↾s 𝐻 ) |
| 62 |
61
|
subgbas |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 63 |
3 62
|
syl |
⊢ ( 𝜑 → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 64 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
| 65 |
3 64
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝑋 ) |
| 66 |
2 65
|
ssfid |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 67 |
63 66
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∈ Fin ) |
| 68 |
|
eqid |
⊢ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } |
| 69 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( 𝑋 / ∼ ) ∧ ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑔 · 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( 𝑋 / ∼ ) ∧ ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑔 · 𝑥 ) = 𝑦 ) } |
| 70 |
59 60 8 67 30 68 69
|
sylow2a |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ♯ ‘ ( 𝑋 / ∼ ) ) − ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) |
| 71 |
|
dvdssub2 |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ ( ♯ ‘ ( 𝑋 / ∼ ) ) ∈ ℤ ∧ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ∈ ℤ ) ∧ 𝑃 ∥ ( ( ♯ ‘ ( 𝑋 / ∼ ) ) − ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ∼ ) ) ↔ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) |
| 72 |
51 52 58 70 71
|
syl31anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ♯ ‘ ( 𝑋 / ∼ ) ) ↔ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) |
| 73 |
49 72
|
mtbid |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) |
| 74 |
|
hasheq0 |
⊢ ( { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ∈ Fin → ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 ↔ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = ∅ ) ) |
| 75 |
55 74
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 ↔ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = ∅ ) ) |
| 76 |
|
dvds0 |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 0 ) |
| 77 |
51 76
|
syl |
⊢ ( 𝜑 → 𝑃 ∥ 0 ) |
| 78 |
|
breq2 |
⊢ ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 → ( 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ↔ 𝑃 ∥ 0 ) ) |
| 79 |
77 78
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) = 0 → 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) |
| 80 |
75 79
|
sylbird |
⊢ ( 𝜑 → ( { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } = ∅ → 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) ) ) |
| 81 |
80
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ ( ♯ ‘ { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ) → { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ≠ ∅ ) ) |
| 82 |
73 81
|
mpd |
⊢ ( 𝜑 → { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ≠ ∅ ) |
| 83 |
|
rabn0 |
⊢ ( { 𝑧 ∈ ( 𝑋 / ∼ ) ∣ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 } ≠ ∅ ↔ ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 ) |
| 84 |
82 83
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 ) |
| 85 |
63
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ↔ ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 ) ) |
| 86 |
85
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ↔ ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ∀ 𝑢 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( 𝑢 · 𝑧 ) = 𝑧 ) ) |
| 87 |
84 86
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) |
| 88 |
|
vex |
⊢ 𝑧 ∈ V |
| 89 |
88
|
elqs |
⊢ ( 𝑧 ∈ ( 𝑋 / ∼ ) ↔ ∃ 𝑔 ∈ 𝑋 𝑧 = [ 𝑔 ] ∼ ) |
| 90 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑧 = [ 𝑔 ] ∼ ) |
| 91 |
90
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 · 𝑧 ) = ( 𝑢 · [ 𝑔 ] ∼ ) ) |
| 92 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 · 𝑧 ) = 𝑧 ) |
| 93 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝜑 ) |
| 94 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑢 ∈ 𝐻 ) |
| 95 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑔 ∈ 𝑋 ) |
| 96 |
1 2 3 4 5 6 7
|
sylow2blem1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑢 · [ 𝑔 ] ∼ ) = [ ( 𝑢 + 𝑔 ) ] ∼ ) |
| 97 |
93 94 95 96
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 · [ 𝑔 ] ∼ ) = [ ( 𝑢 + 𝑔 ) ] ∼ ) |
| 98 |
91 92 97
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑧 = [ ( 𝑢 + 𝑔 ) ] ∼ ) |
| 99 |
90 98
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → [ 𝑔 ] ∼ = [ ( 𝑢 + 𝑔 ) ] ∼ ) |
| 100 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ∼ Er 𝑋 ) |
| 101 |
100 95
|
erth |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 ∼ ( 𝑢 + 𝑔 ) ↔ [ 𝑔 ] ∼ = [ ( 𝑢 + 𝑔 ) ] ∼ ) ) |
| 102 |
99 101
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑔 ∼ ( 𝑢 + 𝑔 ) ) |
| 103 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝐺 ∈ Grp ) |
| 104 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝐾 ⊆ 𝑋 ) |
| 105 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 106 |
1 105 5 6
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ 𝑋 ) → ( 𝑔 ∼ ( 𝑢 + 𝑔 ) ↔ ( 𝑔 ∈ 𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) ) ) |
| 107 |
103 104 106
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 ∼ ( 𝑢 + 𝑔 ) ↔ ( 𝑔 ∈ 𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) ) ) |
| 108 |
102 107
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) ) |
| 109 |
108
|
simp3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) |
| 110 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) → ( 𝑔 + 𝑥 ) = ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ) |
| 111 |
110
|
oveq1d |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) → ( ( 𝑔 + 𝑥 ) − 𝑔 ) = ( ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) − 𝑔 ) ) |
| 112 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) |
| 113 |
|
ovex |
⊢ ( ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) − 𝑔 ) ∈ V |
| 114 |
111 112 113
|
fvmpt |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = ( ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) − 𝑔 ) ) |
| 115 |
109 114
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = ( ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) − 𝑔 ) ) |
| 116 |
1 5 34 105
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) = ( 0g ‘ 𝐺 ) ) |
| 117 |
103 95 116
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) = ( 0g ‘ 𝐺 ) ) |
| 118 |
117
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑔 + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) + ( 𝑢 + 𝑔 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑢 + 𝑔 ) ) ) |
| 119 |
1 105
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝑋 ) |
| 120 |
103 95 119
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝑋 ) |
| 121 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝐻 ⊆ 𝑋 ) |
| 122 |
121 94
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑢 ∈ 𝑋 ) |
| 123 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑢 + 𝑔 ) ∈ 𝑋 ) |
| 124 |
103 122 95 123
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑢 + 𝑔 ) ∈ 𝑋 ) |
| 125 |
1 5
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝑋 ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ) ) → ( ( 𝑔 + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) + ( 𝑢 + 𝑔 ) ) = ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ) |
| 126 |
103 95 120 124 125
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑔 + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) + ( 𝑢 + 𝑔 ) ) = ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ) |
| 127 |
1 5 34
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 + 𝑔 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + 𝑔 ) ) = ( 𝑢 + 𝑔 ) ) |
| 128 |
103 124 127
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + 𝑔 ) ) = ( 𝑢 + 𝑔 ) ) |
| 129 |
118 126 128
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = ( 𝑢 + 𝑔 ) ) |
| 130 |
129
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑔 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) − 𝑔 ) = ( ( 𝑢 + 𝑔 ) − 𝑔 ) ) |
| 131 |
1 5 10
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑢 + 𝑔 ) − 𝑔 ) = 𝑢 ) |
| 132 |
103 122 95 131
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑢 + 𝑔 ) − 𝑔 ) = 𝑢 ) |
| 133 |
115 130 132
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) = 𝑢 ) |
| 134 |
|
ovex |
⊢ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ∈ V |
| 135 |
134 112
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) Fn 𝐾 |
| 136 |
|
fnfvelrn |
⊢ ( ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) Fn 𝐾 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ∈ 𝐾 ) → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 137 |
135 109 136
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) + ( 𝑢 + 𝑔 ) ) ) ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 138 |
133 137
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ( 𝑢 ∈ 𝐻 ∧ ( 𝑢 · 𝑧 ) = 𝑧 ) ) → 𝑢 ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 139 |
138
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ 𝑢 ∈ 𝐻 ) → ( ( 𝑢 · 𝑧 ) = 𝑧 → 𝑢 ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) |
| 140 |
139
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) → ( ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∀ 𝑢 ∈ 𝐻 𝑢 ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) |
| 141 |
140
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) ∧ ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) → ∀ 𝑢 ∈ 𝐻 𝑢 ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 142 |
141
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) → ∀ 𝑢 ∈ 𝐻 𝑢 ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 143 |
|
dfss3 |
⊢ ( 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ↔ ∀ 𝑢 ∈ 𝐻 𝑢 ∈ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 144 |
142 143
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) ∧ ( 𝑔 ∈ 𝑋 ∧ 𝑧 = [ 𝑔 ] ∼ ) ) → 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |
| 145 |
144
|
expr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) ∧ 𝑔 ∈ 𝑋 ) → ( 𝑧 = [ 𝑔 ] ∼ → 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) |
| 146 |
145
|
reximdva |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 ) → ( ∃ 𝑔 ∈ 𝑋 𝑧 = [ 𝑔 ] ∼ → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) |
| 147 |
146
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ( ∃ 𝑔 ∈ 𝑋 𝑧 = [ 𝑔 ] ∼ → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) ) |
| 148 |
147
|
com23 |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝑋 𝑧 = [ 𝑔 ] ∼ → ( ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) ) |
| 149 |
89 148
|
biimtrid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 / ∼ ) → ( ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) ) |
| 150 |
149
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ∀ 𝑢 ∈ 𝐻 ( 𝑢 · 𝑧 ) = 𝑧 → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) ) |
| 151 |
87 150
|
mpd |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝑋 𝐻 ⊆ ran ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑔 + 𝑥 ) − 𝑔 ) ) ) |