Step |
Hyp |
Ref |
Expression |
1 |
|
sylow3.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow3.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
sylow3.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
4 |
|
sylow3.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
sylow3lem1.a |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
sylow3lem1.d |
⊢ − = ( -g ‘ 𝐺 ) |
7 |
|
sylow3lem1.m |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) |
8 |
|
ovex |
⊢ ( 𝑃 pSyl 𝐺 ) ∈ V |
9 |
2 8
|
jctir |
⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ ( 𝑃 pSyl 𝐺 ) ∈ V ) ) |
10 |
1
|
fislw |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → ( 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
11 |
2 3 4 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
13 |
12
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
14 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → 𝑥 ∈ 𝑋 ) |
16 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) |
17 |
1 5 6 16
|
conjsubg |
⊢ ( ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
14 15 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
1 5 6 16
|
conjsubgen |
⊢ ( ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) |
20 |
14 15 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → 𝑋 ∈ Fin ) |
22 |
1
|
subgss |
⊢ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) → 𝑦 ⊆ 𝑋 ) |
23 |
14 22
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → 𝑦 ⊆ 𝑋 ) |
24 |
21 23
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → 𝑦 ∈ Fin ) |
25 |
1
|
subgss |
⊢ ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ⊆ 𝑋 ) |
26 |
18 25
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ⊆ 𝑋 ) |
27 |
21 26
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ Fin ) |
28 |
|
hashen |
⊢ ( ( 𝑦 ∈ Fin ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↔ 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ) |
29 |
24 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↔ 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ) |
30 |
20 29
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ) |
31 |
13
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
32 |
30 31
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
33 |
1
|
fislw |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
34 |
2 3 4 33
|
syl3anc |
⊢ ( 𝜑 → ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
36 |
18 32 35
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( 𝑃 pSyl 𝐺 ) ) |
37 |
36
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( 𝑃 pSyl 𝐺 ) ) |
38 |
7
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ∈ ( 𝑃 pSyl 𝐺 ) ↔ ⊕ : ( 𝑋 × ( 𝑃 pSyl 𝐺 ) ) ⟶ ( 𝑃 pSyl 𝐺 ) ) |
39 |
37 38
|
sylib |
⊢ ( 𝜑 → ⊕ : ( 𝑋 × ( 𝑃 pSyl 𝐺 ) ) ⟶ ( 𝑃 pSyl 𝐺 ) ) |
40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝐺 ∈ Grp ) |
41 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
42 |
1 41
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
43 |
40 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) |
45 |
|
simpr |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) |
46 |
|
simpl |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
47 |
46
|
oveq1d |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) |
48 |
47 46
|
oveq12d |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( ( 𝑥 + 𝑧 ) − 𝑥 ) = ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) |
49 |
45 48
|
mpteq12dv |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) ) |
50 |
49
|
rneqd |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) ) |
51 |
|
vex |
⊢ 𝑎 ∈ V |
52 |
51
|
mptex |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) ∈ V |
53 |
52
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) ∈ V |
54 |
50 7 53
|
ovmpoa |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) ) |
55 |
43 44 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) ) |
56 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝐺 ∈ Grp ) |
57 |
|
slwsubg |
⊢ ( 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑎 ∈ ( SubGrp ‘ 𝐺 ) ) |
58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝑎 ∈ ( SubGrp ‘ 𝐺 ) ) |
59 |
1
|
subgss |
⊢ ( 𝑎 ∈ ( SubGrp ‘ 𝐺 ) → 𝑎 ⊆ 𝑋 ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝑎 ⊆ 𝑋 ) |
61 |
60
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝑋 ) |
62 |
1 5 41
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
63 |
56 61 62
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
64 |
63
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) = ( 𝑧 − ( 0g ‘ 𝐺 ) ) ) |
65 |
1 41 6
|
grpsubid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 − ( 0g ‘ 𝐺 ) ) = 𝑧 ) |
66 |
56 61 65
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑧 − ( 0g ‘ 𝐺 ) ) = 𝑧 ) |
67 |
64 66
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) = 𝑧 ) |
68 |
67
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) = ( 𝑧 ∈ 𝑎 ↦ 𝑧 ) ) |
69 |
|
mptresid |
⊢ ( I ↾ 𝑎 ) = ( 𝑧 ∈ 𝑎 ↦ 𝑧 ) |
70 |
68 69
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) = ( I ↾ 𝑎 ) ) |
71 |
70
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) = ran ( I ↾ 𝑎 ) ) |
72 |
|
rnresi |
⊢ ran ( I ↾ 𝑎 ) = 𝑎 |
73 |
71 72
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) − ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) |
74 |
55 73
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ) |
75 |
|
ovex |
⊢ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ∈ V |
76 |
|
oveq2 |
⊢ ( 𝑤 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) → ( 𝑏 + 𝑤 ) = ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝑤 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) → ( ( 𝑏 + 𝑤 ) − 𝑏 ) = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) ) |
78 |
75 77
|
abrexco |
⊢ { 𝑢 ∣ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) } 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) } |
79 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) |
80 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) |
81 |
|
simpr |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) |
82 |
|
simpl |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → 𝑥 = 𝑐 ) |
83 |
82
|
oveq1d |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( 𝑐 + 𝑧 ) ) |
84 |
83 82
|
oveq12d |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( ( 𝑥 + 𝑧 ) − 𝑥 ) = ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) |
85 |
81 84
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
86 |
85
|
rneqd |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
87 |
51
|
mptex |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ∈ V |
88 |
87
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ∈ V |
89 |
86 7 88
|
ovmpoa |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝑐 ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
90 |
79 80 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
91 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) |
92 |
91
|
rnmpt |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) } |
93 |
90 92
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) } ) |
94 |
93
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) ↔ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) } 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ) |
95 |
94
|
abbidv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) } = { 𝑢 ∣ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( ( 𝑐 + 𝑧 ) − 𝑐 ) } 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) } ) |
96 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
97 |
96
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝐺 ∈ Grp ) |
98 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) |
99 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
100 |
96 98 79 99
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
101 |
100
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
102 |
61
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝑋 ) |
103 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 + 𝑐 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) ∈ 𝑋 ) |
104 |
97 101 102 103
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) ∈ 𝑋 ) |
105 |
79
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑐 ∈ 𝑋 ) |
106 |
98
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑏 ∈ 𝑋 ) |
107 |
1 5 6
|
grpsubsub4 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − 𝑐 ) − 𝑏 ) = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) |
108 |
97 104 105 106 107
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − 𝑐 ) − 𝑏 ) = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) |
109 |
1 5
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
110 |
97 106 105 102 109
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
111 |
110
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − 𝑐 ) = ( ( 𝑏 + ( 𝑐 + 𝑧 ) ) − 𝑐 ) ) |
112 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑐 + 𝑧 ) ∈ 𝑋 ) |
113 |
97 105 102 112
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑐 + 𝑧 ) ∈ 𝑋 ) |
114 |
1 5 6
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ ( 𝑐 + 𝑧 ) ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + ( 𝑐 + 𝑧 ) ) − 𝑐 ) = ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
115 |
97 106 113 105 114
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 𝑏 + ( 𝑐 + 𝑧 ) ) − 𝑐 ) = ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
116 |
111 115
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − 𝑐 ) = ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) ) |
117 |
116
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − 𝑐 ) − 𝑏 ) = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) ) |
118 |
108 117
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) ) |
119 |
118
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑢 = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ↔ 𝑢 = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) ) ) |
120 |
119
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ↔ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) ) ) |
121 |
120
|
abbidv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + ( ( 𝑐 + 𝑧 ) − 𝑐 ) ) − 𝑏 ) } ) |
122 |
78 95 121
|
3eqtr4a |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) } ) |
123 |
|
eqid |
⊢ ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) |
124 |
123
|
rnmpt |
⊢ ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) = { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( ( 𝑏 + 𝑤 ) − 𝑏 ) } |
125 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) |
126 |
125
|
rnmpt |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) } |
127 |
122 124 126
|
3eqtr4g |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ) |
128 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ⊕ : ( 𝑋 × ( 𝑃 pSyl 𝐺 ) ) ⟶ ( 𝑃 pSyl 𝐺 ) ) |
129 |
128 79 80
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) ∈ ( 𝑃 pSyl 𝐺 ) ) |
130 |
|
simpr |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) |
131 |
|
simpl |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → 𝑥 = 𝑏 ) |
132 |
131
|
oveq1d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑥 + 𝑧 ) = ( 𝑏 + 𝑧 ) ) |
133 |
132 131
|
oveq12d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( ( 𝑥 + 𝑧 ) − 𝑥 ) = ( ( 𝑏 + 𝑧 ) − 𝑏 ) ) |
134 |
130 133
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑧 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑧 ) − 𝑏 ) ) ) |
135 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑏 + 𝑧 ) = ( 𝑏 + 𝑤 ) ) |
136 |
135
|
oveq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑏 + 𝑧 ) − 𝑏 ) = ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) |
137 |
136
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑧 ) − 𝑏 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) |
138 |
134 137
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ) |
139 |
138
|
rneqd |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ) |
140 |
|
ovex |
⊢ ( 𝑐 ⊕ 𝑎 ) ∈ V |
141 |
140
|
mptex |
⊢ ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ∈ V |
142 |
141
|
rnex |
⊢ ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ∈ V |
143 |
139 7 142
|
ovmpoa |
⊢ ( ( 𝑏 ∈ 𝑋 ∧ ( 𝑐 ⊕ 𝑎 ) ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ) |
144 |
98 129 143
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( ( 𝑏 + 𝑤 ) − 𝑏 ) ) ) |
145 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) |
146 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → 𝑥 = ( 𝑏 + 𝑐 ) ) |
147 |
146
|
oveq1d |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) |
148 |
147 146
|
oveq12d |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( ( 𝑥 + 𝑧 ) − 𝑥 ) = ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) |
149 |
145 148
|
mpteq12dv |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ) |
150 |
149
|
rneqd |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ) |
151 |
51
|
mptex |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ∈ V |
152 |
151
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ∈ V |
153 |
150 7 152
|
ovmpoa |
⊢ ( ( ( 𝑏 + 𝑐 ) ∈ 𝑋 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ) |
154 |
100 80 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( ( 𝑏 + 𝑐 ) + 𝑧 ) − ( 𝑏 + 𝑐 ) ) ) ) |
155 |
127 144 154
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) |
156 |
155
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) |
157 |
74 156
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) |
158 |
157
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) |
159 |
39 158
|
jca |
⊢ ( 𝜑 → ( ⊕ : ( 𝑋 × ( 𝑃 pSyl 𝐺 ) ) ⟶ ( 𝑃 pSyl 𝐺 ) ∧ ∀ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) ) |
160 |
1 5 41
|
isga |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct ( 𝑃 pSyl 𝐺 ) ) ↔ ( ( 𝐺 ∈ Grp ∧ ( 𝑃 pSyl 𝐺 ) ∈ V ) ∧ ( ⊕ : ( 𝑋 × ( 𝑃 pSyl 𝐺 ) ) ⟶ ( 𝑃 pSyl 𝐺 ) ∧ ∀ 𝑎 ∈ ( 𝑃 pSyl 𝐺 ) ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) ) ) |
161 |
9 159 160
|
sylanbrc |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct ( 𝑃 pSyl 𝐺 ) ) ) |