Step |
Hyp |
Ref |
Expression |
1 |
|
sylow3.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow3.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
sylow3.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
4 |
|
sylow3.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
sylow3lem1.a |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
sylow3lem1.d |
⊢ − = ( -g ‘ 𝐺 ) |
7 |
|
sylow3lem1.m |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) |
8 |
|
sylow3lem2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ) |
9 |
|
sylow3lem2.h |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐾 ) = 𝐾 } |
10 |
|
sylow3lem2.n |
⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝐾 ↔ ( 𝑦 + 𝑥 ) ∈ 𝐾 ) } |
11 |
1 2 3 4 5 6 7 8 9 10
|
sylow3lem3 |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) = ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ) |
12 |
|
slwsubg |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
13 |
8 12
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
14 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑁 ) = ( 𝐺 ↾s 𝑁 ) |
15 |
10 1 5 14
|
nmznsg |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ∈ ( NrmSGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
16 |
|
nsgsubg |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ ( 𝐺 ↾s 𝑁 ) ) → 𝐾 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
17 |
15 16
|
syl |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
18 |
13 17
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
19 |
10 1 5
|
nmzsubg |
⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
14
|
subgbas |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 = ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑁 = ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
23 |
1
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ 𝑋 ) |
24 |
20 23
|
syl |
⊢ ( 𝜑 → 𝑁 ⊆ 𝑋 ) |
25 |
3 24
|
ssfid |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
26 |
22 25
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ∈ Fin ) |
27 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) |
28 |
27
|
lagsubg |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ∧ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ∈ Fin ) → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) ) |
29 |
18 26 28
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) ) |
30 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑁 ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) ) |
31 |
29 30
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑁 ) ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
33 |
32
|
subg0cl |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐾 ) |
34 |
13 33
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐾 ) |
35 |
34
|
ne0d |
⊢ ( 𝜑 → 𝐾 ≠ ∅ ) |
36 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
37 |
13 36
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
38 |
3 37
|
ssfid |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
39 |
|
hashnncl |
⊢ ( 𝐾 ∈ Fin → ( ( ♯ ‘ 𝐾 ) ∈ ℕ ↔ 𝐾 ≠ ∅ ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∈ ℕ ↔ 𝐾 ≠ ∅ ) ) |
41 |
35 40
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ ) |
42 |
41
|
nnzd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
43 |
|
hashcl |
⊢ ( 𝑁 ∈ Fin → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
44 |
25 43
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
45 |
44
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑁 ) ∈ ℤ ) |
46 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
47 |
3 46
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
48 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) |
49 |
1 48
|
eqger |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er 𝑋 ) |
50 |
20 49
|
syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er 𝑋 ) |
51 |
50
|
qsss |
⊢ ( 𝜑 → ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ⊆ 𝒫 𝑋 ) |
52 |
47 51
|
ssfid |
⊢ ( 𝜑 → ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ∈ Fin ) |
53 |
|
hashcl |
⊢ ( ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ∈ Fin → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∈ ℕ0 ) |
54 |
52 53
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∈ ℕ0 ) |
55 |
54
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∈ ℤ ) |
56 |
|
dvdscmul |
⊢ ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ♯ ‘ 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∈ ℤ ) → ( ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑁 ) → ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝐾 ) ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝑁 ) ) ) ) |
57 |
42 45 55 56
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑁 ) → ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝐾 ) ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝑁 ) ) ) ) |
58 |
31 57
|
mpd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝐾 ) ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝑁 ) ) ) |
59 |
|
hashcl |
⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
60 |
3 59
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
61 |
60
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℂ ) |
62 |
41
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℂ ) |
63 |
41
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ≠ 0 ) |
64 |
61 62 63
|
divcan1d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) · ( ♯ ‘ 𝐾 ) ) = ( ♯ ‘ 𝑋 ) ) |
65 |
1 48 20 3
|
lagsubg2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝑁 ) ) ) |
66 |
64 65
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) · ( ♯ ‘ 𝐾 ) ) = ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝑁 ) ) ) |
67 |
58 66
|
breqtrrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝐾 ) ) ∥ ( ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) · ( ♯ ‘ 𝐾 ) ) ) |
68 |
1
|
lagsubg |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑋 ) ) |
69 |
13 3 68
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑋 ) ) |
70 |
60
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
71 |
|
dvdsval2 |
⊢ ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ≠ 0 ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ∈ ℤ ) ) |
72 |
42 63 70 71
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ∈ ℤ ) ) |
73 |
69 72
|
mpbid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ∈ ℤ ) |
74 |
|
dvdsmulcr |
⊢ ( ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ≠ 0 ) ) → ( ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝐾 ) ) ∥ ( ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) · ( ♯ ‘ 𝐾 ) ) ↔ ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∥ ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ) ) |
75 |
55 73 42 63 74
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) · ( ♯ ‘ 𝐾 ) ) ∥ ( ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) · ( ♯ ‘ 𝐾 ) ) ↔ ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∥ ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ) ) |
76 |
67 75
|
mpbid |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∥ ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) ) |
77 |
1 3 8
|
slwhash |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( ♯ ‘ 𝐾 ) ) = ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
79 |
76 78
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑁 ) ) ) ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
80 |
11 79
|
eqbrtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) ∥ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |