Metamath Proof Explorer
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)
|
|
Ref |
Expression |
|
Hypotheses |
sylsyld.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
sylsyld.2 |
⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) |
|
|
sylsyld.3 |
⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) |
|
Assertion |
sylsyld |
⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sylsyld.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
sylsyld.2 |
⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) |
3 |
|
sylsyld.3 |
⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) |
5 |
2 4
|
syld |
⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) ) |