Metamath Proof Explorer


Theorem sylsyld

Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)

Ref Expression
Hypotheses sylsyld.1 ( 𝜑𝜓 )
sylsyld.2 ( 𝜑 → ( 𝜒𝜃 ) )
sylsyld.3 ( 𝜓 → ( 𝜃𝜏 ) )
Assertion sylsyld ( 𝜑 → ( 𝜒𝜏 ) )

Proof

Step Hyp Ref Expression
1 sylsyld.1 ( 𝜑𝜓 )
2 sylsyld.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 sylsyld.3 ( 𝜓 → ( 𝜃𝜏 ) )
4 1 3 syl ( 𝜑 → ( 𝜃𝜏 ) )
5 2 4 syld ( 𝜑 → ( 𝜒𝜏 ) )