Metamath Proof Explorer


Theorem symdif0

Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdif0 ( 𝐴 △ ∅ ) = 𝐴

Proof

Step Hyp Ref Expression
1 df-symdif ( 𝐴 △ ∅ ) = ( ( 𝐴 ∖ ∅ ) ∪ ( ∅ ∖ 𝐴 ) )
2 dif0 ( 𝐴 ∖ ∅ ) = 𝐴
3 0dif ( ∅ ∖ 𝐴 ) = ∅
4 2 3 uneq12i ( ( 𝐴 ∖ ∅ ) ∪ ( ∅ ∖ 𝐴 ) ) = ( 𝐴 ∪ ∅ )
5 un0 ( 𝐴 ∪ ∅ ) = 𝐴
6 1 4 5 3eqtri ( 𝐴 △ ∅ ) = 𝐴