Metamath Proof Explorer


Theorem symdifass

Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by BJ, 7-Sep-2022)

Ref Expression
Assertion symdifass ( ( 𝐴𝐵 ) △ 𝐶 ) = ( 𝐴 △ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 elsymdifxor ( 𝑥 ∈ ( ( 𝐴𝐵 ) △ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ⊻ 𝑥𝐶 ) )
2 elsymdifxor ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
3 biid ( 𝑥𝐶𝑥𝐶 )
4 2 3 xorbi12i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ⊻ 𝑥𝐶 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ⊻ 𝑥𝐶 ) )
5 xorass ( ( ( 𝑥𝐴𝑥𝐵 ) ⊻ 𝑥𝐶 ) ↔ ( 𝑥𝐴 ⊻ ( 𝑥𝐵𝑥𝐶 ) ) )
6 biid ( 𝑥𝐴𝑥𝐴 )
7 elsymdifxor ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
8 7 bicomi ( ( 𝑥𝐵𝑥𝐶 ) ↔ 𝑥 ∈ ( 𝐵𝐶 ) )
9 6 8 xorbi12i ( ( 𝑥𝐴 ⊻ ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
10 4 5 9 3bitri ( ( 𝑥 ∈ ( 𝐴𝐵 ) ⊻ 𝑥𝐶 ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
11 elsymdifxor ( 𝑥 ∈ ( 𝐴 △ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
12 11 bicomi ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ 𝑥 ∈ ( 𝐴 △ ( 𝐵𝐶 ) ) )
13 1 10 12 3bitri ( 𝑥 ∈ ( ( 𝐴𝐵 ) △ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 △ ( 𝐵𝐶 ) ) )
14 13 eqriv ( ( 𝐴𝐵 ) △ 𝐶 ) = ( 𝐴 △ ( 𝐵𝐶 ) )