Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifcom | ⊢ ( 𝐴 △ 𝐵 ) = ( 𝐵 △ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uncom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐵 ) ) | |
| 2 | df-symdif | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) | |
| 3 | df-symdif | ⊢ ( 𝐵 △ 𝐴 ) = ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | 1 2 3 | 3eqtr4i | ⊢ ( 𝐴 △ 𝐵 ) = ( 𝐵 △ 𝐴 ) |