Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | symdifcom | ⊢ ( 𝐴 △ 𝐵 ) = ( 𝐵 △ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐵 ) ) | |
2 | df-symdif | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) | |
3 | df-symdif | ⊢ ( 𝐵 △ 𝐴 ) = ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐵 ) ) | |
4 | 1 2 3 | 3eqtr4i | ⊢ ( 𝐴 △ 𝐵 ) = ( 𝐵 △ 𝐴 ) |