Metamath Proof Explorer


Theorem symdifcom

Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifcom ( 𝐴𝐵 ) = ( 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 uncom ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐴 ) ) = ( ( 𝐵𝐴 ) ∪ ( 𝐴𝐵 ) )
2 df-symdif ( 𝐴𝐵 ) = ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐴 ) )
3 df-symdif ( 𝐵𝐴 ) = ( ( 𝐵𝐴 ) ∪ ( 𝐴𝐵 ) )
4 1 2 3 3eqtr4i ( 𝐴𝐵 ) = ( 𝐵𝐴 )