Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 △ 𝐶 ) = ( 𝐵 △ 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐶 ) ) | |
| 2 | difeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ∖ 𝐴 ) = ( 𝐶 ∖ 𝐵 ) ) | |
| 3 | 1 2 | uneq12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐴 ) ) = ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ) | 
| 4 | df-symdif | ⊢ ( 𝐴 △ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐴 ) ) | |
| 5 | df-symdif | ⊢ ( 𝐵 △ 𝐶 ) = ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) | |
| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 △ 𝐶 ) = ( 𝐵 △ 𝐶 ) ) |