Metamath Proof Explorer


Theorem symdifeq2

Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifeq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 symdifeq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )
2 symdifcom ( 𝐶𝐴 ) = ( 𝐴𝐶 )
3 symdifcom ( 𝐶𝐵 ) = ( 𝐵𝐶 )
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )