Metamath Proof Explorer
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
symdifeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 △ 𝐴 ) = ( 𝐶 △ 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symdifeq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 △ 𝐶 ) = ( 𝐵 △ 𝐶 ) ) |
| 2 |
|
symdifcom |
⊢ ( 𝐶 △ 𝐴 ) = ( 𝐴 △ 𝐶 ) |
| 3 |
|
symdifcom |
⊢ ( 𝐶 △ 𝐵 ) = ( 𝐵 △ 𝐶 ) |
| 4 |
1 2 3
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 △ 𝐴 ) = ( 𝐶 △ 𝐵 ) ) |