Metamath Proof Explorer
		
		
		
		Description:  The symmetric difference of a class with itself is the empty class.
     (Contributed by Scott Fenton, 25-Apr-2012)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | symdifid | ⊢  ( 𝐴  △  𝐴 )  =  ∅ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-symdif | ⊢ ( 𝐴  △  𝐴 )  =  ( ( 𝐴  ∖  𝐴 )  ∪  ( 𝐴  ∖  𝐴 ) ) | 
						
							| 2 |  | difid | ⊢ ( 𝐴  ∖  𝐴 )  =  ∅ | 
						
							| 3 | 2 2 | uneq12i | ⊢ ( ( 𝐴  ∖  𝐴 )  ∪  ( 𝐴  ∖  𝐴 ) )  =  ( ∅  ∪  ∅ ) | 
						
							| 4 |  | un0 | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 5 | 1 3 4 | 3eqtri | ⊢ ( 𝐴  △  𝐴 )  =  ∅ |