Metamath Proof Explorer


Theorem symdifid

Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012)

Ref Expression
Assertion symdifid ( 𝐴𝐴 ) = ∅

Proof

Step Hyp Ref Expression
1 df-symdif ( 𝐴𝐴 ) = ( ( 𝐴𝐴 ) ∪ ( 𝐴𝐴 ) )
2 difid ( 𝐴𝐴 ) = ∅
3 2 2 uneq12i ( ( 𝐴𝐴 ) ∪ ( 𝐴𝐴 ) ) = ( ∅ ∪ ∅ )
4 un0 ( ∅ ∪ ∅ ) = ∅
5 1 3 4 3eqtri ( 𝐴𝐴 ) = ∅