Metamath Proof Explorer


Theorem symdifv

Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifv ( 𝐴 △ V ) = ( V ∖ 𝐴 )

Proof

Step Hyp Ref Expression
1 df-symdif ( 𝐴 △ V ) = ( ( 𝐴 ∖ V ) ∪ ( V ∖ 𝐴 ) )
2 ssv 𝐴 ⊆ V
3 ssdif0 ( 𝐴 ⊆ V ↔ ( 𝐴 ∖ V ) = ∅ )
4 2 3 mpbi ( 𝐴 ∖ V ) = ∅
5 4 uneq1i ( ( 𝐴 ∖ V ) ∪ ( V ∖ 𝐴 ) ) = ( ∅ ∪ ( V ∖ 𝐴 ) )
6 uncom ( ∅ ∪ ( V ∖ 𝐴 ) ) = ( ( V ∖ 𝐴 ) ∪ ∅ )
7 un0 ( ( V ∖ 𝐴 ) ∪ ∅ ) = ( V ∖ 𝐴 )
8 6 7 eqtri ( ∅ ∪ ( V ∖ 𝐴 ) ) = ( V ∖ 𝐴 )
9 5 8 eqtri ( ( 𝐴 ∖ V ) ∪ ( V ∖ 𝐴 ) ) = ( V ∖ 𝐴 )
10 1 9 eqtri ( 𝐴 △ V ) = ( V ∖ 𝐴 )