| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symg1bas.1 | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | symg1bas.2 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | symg1bas.0 | ⊢ 𝐴  =  { 𝐼 } | 
						
							| 4 |  | snfi | ⊢ { 𝐼 }  ∈  Fin | 
						
							| 5 | 3 4 | eqeltri | ⊢ 𝐴  ∈  Fin | 
						
							| 6 | 1 2 | symghash | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐵 )  =  ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ♯ ‘ 𝐵 )  =  ( ! ‘ ( ♯ ‘ 𝐴 ) ) | 
						
							| 8 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ { 𝐼 } ) | 
						
							| 9 |  | hashsng | ⊢ ( 𝐼  ∈  𝑉  →  ( ♯ ‘ { 𝐼 } )  =  1 ) | 
						
							| 10 | 8 9 | eqtrid | ⊢ ( 𝐼  ∈  𝑉  →  ( ♯ ‘ 𝐴 )  =  1 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝐼  ∈  𝑉  →  ( ! ‘ ( ♯ ‘ 𝐴 ) )  =  ( ! ‘ 1 ) ) | 
						
							| 12 |  | fac1 | ⊢ ( ! ‘ 1 )  =  1 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝐼  ∈  𝑉  →  ( ! ‘ ( ♯ ‘ 𝐴 ) )  =  1 ) | 
						
							| 14 | 7 13 | eqtrid | ⊢ ( 𝐼  ∈  𝑉  →  ( ♯ ‘ 𝐵 )  =  1 ) |