Metamath Proof Explorer


Theorem symg2bas

Description: The symmetric group on a pair is the symmetric group S_2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S_1, see Theorem symg1bas . (Contributed by AV, 9-Dec-2018) (Proof shortened by AV, 16-Jun-2022)

Ref Expression
Hypotheses symg1bas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symg1bas.2 𝐵 = ( Base ‘ 𝐺 )
symg2bas.0 𝐴 = { 𝐼 , 𝐽 }
Assertion symg2bas ( ( 𝐼𝑉𝐽𝑊 ) → 𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } )

Proof

Step Hyp Ref Expression
1 symg1bas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symg1bas.2 𝐵 = ( Base ‘ 𝐺 )
3 symg2bas.0 𝐴 = { 𝐼 , 𝐽 }
4 eqid ( SymGrp ‘ { 𝐽 } ) = ( SymGrp ‘ { 𝐽 } )
5 eqid ( Base ‘ ( SymGrp ‘ { 𝐽 } ) ) = ( Base ‘ ( SymGrp ‘ { 𝐽 } ) )
6 eqid { 𝐽 } = { 𝐽 }
7 4 5 6 symg1bas ( 𝐽𝑊 → ( Base ‘ ( SymGrp ‘ { 𝐽 } ) ) = { { ⟨ 𝐽 , 𝐽 ⟩ } } )
8 7 ad2antll ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( Base ‘ ( SymGrp ‘ { 𝐽 } ) ) = { { ⟨ 𝐽 , 𝐽 ⟩ } } )
9 df-pr { 𝐼 , 𝐽 } = ( { 𝐼 } ∪ { 𝐽 } )
10 sneq ( 𝐼 = 𝐽 → { 𝐼 } = { 𝐽 } )
11 10 uneq1d ( 𝐼 = 𝐽 → ( { 𝐼 } ∪ { 𝐽 } ) = ( { 𝐽 } ∪ { 𝐽 } ) )
12 11 adantr ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( { 𝐼 } ∪ { 𝐽 } ) = ( { 𝐽 } ∪ { 𝐽 } ) )
13 unidm ( { 𝐽 } ∪ { 𝐽 } ) = { 𝐽 }
14 12 13 eqtrdi ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( { 𝐼 } ∪ { 𝐽 } ) = { 𝐽 } )
15 9 14 eqtrid ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { 𝐼 , 𝐽 } = { 𝐽 } )
16 3 15 eqtrid ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → 𝐴 = { 𝐽 } )
17 16 fveq2d ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( SymGrp ‘ 𝐴 ) = ( SymGrp ‘ { 𝐽 } ) )
18 1 17 eqtrid ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → 𝐺 = ( SymGrp ‘ { 𝐽 } ) )
19 18 fveq2d ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ ( SymGrp ‘ { 𝐽 } ) ) )
20 2 19 eqtrid ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → 𝐵 = ( Base ‘ ( SymGrp ‘ { 𝐽 } ) ) )
21 id ( 𝐼 = 𝐽𝐼 = 𝐽 )
22 21 21 opeq12d ( 𝐼 = 𝐽 → ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐽 , 𝐽 ⟩ )
23 22 adantr ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐽 , 𝐽 ⟩ )
24 23 preq1d ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } )
25 eqid 𝐽 , 𝐽 ⟩ = ⟨ 𝐽 , 𝐽
26 opex 𝐽 , 𝐽 ⟩ ∈ V
27 26 26 preqsn ( { ⟨ 𝐽 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ } ↔ ( ⟨ 𝐽 , 𝐽 ⟩ = ⟨ 𝐽 , 𝐽 ⟩ ∧ ⟨ 𝐽 , 𝐽 ⟩ = ⟨ 𝐽 , 𝐽 ⟩ ) )
28 25 25 27 mpbir2an { ⟨ 𝐽 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ }
29 24 28 eqtrdi ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ } )
30 opeq1 ( 𝐼 = 𝐽 → ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝐽 , 𝐽 ⟩ )
31 opeq2 ( 𝐼 = 𝐽 → ⟨ 𝐽 , 𝐼 ⟩ = ⟨ 𝐽 , 𝐽 ⟩ )
32 30 31 preq12d ( 𝐼 = 𝐽 → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } )
33 32 28 eqtrdi ( 𝐼 = 𝐽 → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ } )
34 33 adantr ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ } )
35 29 34 preq12d ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } = { { ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐽 , 𝐽 ⟩ } } )
36 eqid { ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ }
37 snex { ⟨ 𝐽 , 𝐽 ⟩ } ∈ V
38 37 37 preqsn ( { { ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐽 , 𝐽 ⟩ } } = { { ⟨ 𝐽 , 𝐽 ⟩ } } ↔ ( { ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ } ∧ { ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐽 , 𝐽 ⟩ } ) )
39 36 36 38 mpbir2an { { ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐽 , 𝐽 ⟩ } } = { { ⟨ 𝐽 , 𝐽 ⟩ } }
40 35 39 eqtrdi ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } = { { ⟨ 𝐽 , 𝐽 ⟩ } } )
41 8 20 40 3eqtr4d ( ( 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → 𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } )
42 2 fvexi 𝐵 ∈ V
43 42 a1i ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → 𝐵 ∈ V )
44 neqne ( ¬ 𝐼 = 𝐽𝐼𝐽 )
45 44 anim2i ( ( ( 𝐼𝑉𝐽𝑊 ) ∧ ¬ 𝐼 = 𝐽 ) → ( ( 𝐼𝑉𝐽𝑊 ) ∧ 𝐼𝐽 ) )
46 df-3an ( ( 𝐼𝑉𝐽𝑊𝐼𝐽 ) ↔ ( ( 𝐼𝑉𝐽𝑊 ) ∧ 𝐼𝐽 ) )
47 45 46 sylibr ( ( ( 𝐼𝑉𝐽𝑊 ) ∧ ¬ 𝐼 = 𝐽 ) → ( 𝐼𝑉𝐽𝑊𝐼𝐽 ) )
48 47 ancoms ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( 𝐼𝑉𝐽𝑊𝐼𝐽 ) )
49 1 2 3 symg2hash ( ( 𝐼𝑉𝐽𝑊𝐼𝐽 ) → ( ♯ ‘ 𝐵 ) = 2 )
50 48 49 syl ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( ♯ ‘ 𝐵 ) = 2 )
51 id ( 𝐼𝑉𝐼𝑉 )
52 51 ancri ( 𝐼𝑉 → ( 𝐼𝑉𝐼𝑉 ) )
53 id ( 𝐽𝑊𝐽𝑊 )
54 53 ancri ( 𝐽𝑊 → ( 𝐽𝑊𝐽𝑊 ) )
55 52 54 anim12i ( ( 𝐼𝑉𝐽𝑊 ) → ( ( 𝐼𝑉𝐼𝑉 ) ∧ ( 𝐽𝑊𝐽𝑊 ) ) )
56 df-ne ( 𝐼𝐽 ↔ ¬ 𝐼 = 𝐽 )
57 id ( 𝐼𝐽𝐼𝐽 )
58 57 ancri ( 𝐼𝐽 → ( 𝐼𝐽𝐼𝐽 ) )
59 56 58 sylbir ( ¬ 𝐼 = 𝐽 → ( 𝐼𝐽𝐼𝐽 ) )
60 f1oprg ( ( ( 𝐼𝑉𝐼𝑉 ) ∧ ( 𝐽𝑊𝐽𝑊 ) ) → ( ( 𝐼𝐽𝐼𝐽 ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } ) )
61 60 imp ( ( ( ( 𝐼𝑉𝐼𝑉 ) ∧ ( 𝐽𝑊𝐽𝑊 ) ) ∧ ( 𝐼𝐽𝐼𝐽 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } )
62 55 59 61 syl2anr ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } )
63 eqidd ( 𝐴 = { 𝐼 , 𝐽 } → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } = { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } )
64 id ( 𝐴 = { 𝐼 , 𝐽 } → 𝐴 = { 𝐼 , 𝐽 } )
65 63 64 64 f1oeq123d ( 𝐴 = { 𝐼 , 𝐽 } → ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : 𝐴1-1-onto𝐴 ↔ { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } ) )
66 3 65 ax-mp ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : 𝐴1-1-onto𝐴 ↔ { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } )
67 62 66 sylibr ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : 𝐴1-1-onto𝐴 )
68 prex { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ V
69 1 2 elsymgbas2 ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ V → ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ 𝐵 ↔ { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : 𝐴1-1-onto𝐴 ) )
70 68 69 ax-mp ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ 𝐵 ↔ { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } : 𝐴1-1-onto𝐴 )
71 67 70 sylibr ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ 𝐵 )
72 f1oprswap ( ( 𝐼𝑉𝐽𝑊 ) → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } )
73 eqidd ( 𝐴 = { 𝐼 , 𝐽 } → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } = { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } )
74 73 64 64 f1oeq123d ( 𝐴 = { 𝐼 , 𝐽 } → ( { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : 𝐴1-1-onto𝐴 ↔ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } ) )
75 3 74 ax-mp ( { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : 𝐴1-1-onto𝐴 ↔ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : { 𝐼 , 𝐽 } –1-1-onto→ { 𝐼 , 𝐽 } )
76 72 75 sylibr ( ( 𝐼𝑉𝐽𝑊 ) → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : 𝐴1-1-onto𝐴 )
77 76 adantl ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : 𝐴1-1-onto𝐴 )
78 prex { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ V
79 1 2 elsymgbas2 ( { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ V → ( { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ 𝐵 ↔ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : 𝐴1-1-onto𝐴 ) )
80 78 79 ax-mp ( { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ 𝐵 ↔ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } : 𝐴1-1-onto𝐴 )
81 77 80 sylibr ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ 𝐵 )
82 opex 𝐼 , 𝐼 ⟩ ∈ V
83 82 26 pm3.2i ( ⟨ 𝐼 , 𝐼 ⟩ ∈ V ∧ ⟨ 𝐽 , 𝐽 ⟩ ∈ V )
84 opex 𝐼 , 𝐽 ⟩ ∈ V
85 opex 𝐽 , 𝐼 ⟩ ∈ V
86 84 85 pm3.2i ( ⟨ 𝐼 , 𝐽 ⟩ ∈ V ∧ ⟨ 𝐽 , 𝐼 ⟩ ∈ V )
87 83 86 pm3.2i ( ( ⟨ 𝐼 , 𝐼 ⟩ ∈ V ∧ ⟨ 𝐽 , 𝐽 ⟩ ∈ V ) ∧ ( ⟨ 𝐼 , 𝐽 ⟩ ∈ V ∧ ⟨ 𝐽 , 𝐼 ⟩ ∈ V ) )
88 opthg2 ( ( 𝐼𝑉𝐽𝑊 ) → ( ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐼 , 𝐽 ⟩ ↔ ( 𝐼 = 𝐼𝐼 = 𝐽 ) ) )
89 eqtr ( ( 𝐼 = 𝐼𝐼 = 𝐽 ) → 𝐼 = 𝐽 )
90 88 89 syl6bi ( ( 𝐼𝑉𝐽𝑊 ) → ( ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐼 , 𝐽 ⟩ → 𝐼 = 𝐽 ) )
91 90 necon3d ( ( 𝐼𝑉𝐽𝑊 ) → ( 𝐼𝐽 → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ) )
92 91 com12 ( 𝐼𝐽 → ( ( 𝐼𝑉𝐽𝑊 ) → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ) )
93 56 92 sylbir ( ¬ 𝐼 = 𝐽 → ( ( 𝐼𝑉𝐽𝑊 ) → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ) )
94 93 imp ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ )
95 52 adantr ( ( 𝐼𝑉𝐽𝑊 ) → ( 𝐼𝑉𝐼𝑉 ) )
96 opthg ( ( 𝐼𝑉𝐼𝑉 ) → ( ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐽 , 𝐼 ⟩ ↔ ( 𝐼 = 𝐽𝐼 = 𝐼 ) ) )
97 95 96 syl ( ( 𝐼𝑉𝐽𝑊 ) → ( ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐽 , 𝐼 ⟩ ↔ ( 𝐼 = 𝐽𝐼 = 𝐼 ) ) )
98 simpl ( ( 𝐼 = 𝐽𝐼 = 𝐼 ) → 𝐼 = 𝐽 )
99 97 98 syl6bi ( ( 𝐼𝑉𝐽𝑊 ) → ( ⟨ 𝐼 , 𝐼 ⟩ = ⟨ 𝐽 , 𝐼 ⟩ → 𝐼 = 𝐽 ) )
100 99 necon3d ( ( 𝐼𝑉𝐽𝑊 ) → ( 𝐼𝐽 → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) )
101 100 com12 ( 𝐼𝐽 → ( ( 𝐼𝑉𝐽𝑊 ) → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) )
102 56 101 sylbir ( ¬ 𝐼 = 𝐽 → ( ( 𝐼𝑉𝐽𝑊 ) → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) )
103 102 imp ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ )
104 94 103 jca ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ∧ ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) )
105 104 orcd ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → ( ( ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ∧ ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) ∨ ( ⟨ 𝐽 , 𝐽 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ∧ ⟨ 𝐽 , 𝐽 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) ) )
106 prneimg ( ( ( ⟨ 𝐼 , 𝐼 ⟩ ∈ V ∧ ⟨ 𝐽 , 𝐽 ⟩ ∈ V ) ∧ ( ⟨ 𝐼 , 𝐽 ⟩ ∈ V ∧ ⟨ 𝐽 , 𝐼 ⟩ ∈ V ) ) → ( ( ( ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ∧ ⟨ 𝐼 , 𝐼 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) ∨ ( ⟨ 𝐽 , 𝐽 ⟩ ≠ ⟨ 𝐼 , 𝐽 ⟩ ∧ ⟨ 𝐽 , 𝐽 ⟩ ≠ ⟨ 𝐽 , 𝐼 ⟩ ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ≠ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ) )
107 87 105 106 mpsyl ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ≠ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } )
108 hash2prd ( ( 𝐵 ∈ V ∧ ( ♯ ‘ 𝐵 ) = 2 ) → ( ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ 𝐵 ∧ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ 𝐵 ∧ { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ≠ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ) → 𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } ) )
109 108 imp ( ( ( 𝐵 ∈ V ∧ ( ♯ ‘ 𝐵 ) = 2 ) ∧ ( { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ∈ 𝐵 ∧ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ∈ 𝐵 ∧ { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } ≠ { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } ) ) → 𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } )
110 43 50 71 81 107 109 syl23anc ( ( ¬ 𝐼 = 𝐽 ∧ ( 𝐼𝑉𝐽𝑊 ) ) → 𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } )
111 41 110 pm2.61ian ( ( 𝐼𝑉𝐽𝑊 ) → 𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ , ⟨ 𝐽 , 𝐽 ⟩ } , { ⟨ 𝐼 , 𝐽 ⟩ , ⟨ 𝐽 , 𝐼 ⟩ } } )