Metamath Proof Explorer


Theorem symgbasexOLD

Description: Obsolete as of 8-Aug-2024. B e. _V follows immediatly from fvex . (Contributed by AV, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symgbasexOLD ( 𝐴𝑉𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 symgbas 𝐵 = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
4 permsetexOLD ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ∈ V )
5 3 4 eqeltrid ( 𝐴𝑉𝐵 ∈ V )