Metamath Proof Explorer
Description: A permutation (element of the symmetric group) is a function from a set
into itself. (Contributed by AV, 1-Jan-2019)
|
|
Ref |
Expression |
|
Hypotheses |
symgbas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
|
|
symgbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
Assertion |
symgbasf |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
symgbas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
1 2
|
symgbasf1o |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
4 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
5 |
3 4
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐴 ) |