Metamath Proof Explorer


Theorem symgbasf

Description: A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symgbasf ( 𝐹𝐵𝐹 : 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 symgbasf1o ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 )
4 f1of ( 𝐹 : 𝐴1-1-onto𝐴𝐹 : 𝐴𝐴 )
5 3 4 syl ( 𝐹𝐵𝐹 : 𝐴𝐴 )