Metamath Proof Explorer


Theorem symgbasf1o

Description: Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symgbasf1o ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 elsymgbas2 ( 𝐹𝐵 → ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 ) )
4 3 ibi ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 )