Metamath Proof Explorer
Description: Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018)
|
|
Ref |
Expression |
|
Hypotheses |
symgbas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
|
|
symgbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
Assertion |
symgbasf1o |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
symgbas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
1 2
|
elsymgbas2 |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
4 |
3
|
ibi |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |