Description: A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
Assertion | symgbasmap | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( 𝐴 ↑m 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
3 | 1 2 | symgbasf | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
4 | simpr | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
5 | dmfex | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐴 ) → 𝐴 ∈ V ) | |
6 | 5 5 | elmapd | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐴 ) → ( 𝐹 ∈ ( 𝐴 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) |
7 | 4 6 | mpbird | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐴 ) → 𝐹 ∈ ( 𝐴 ↑m 𝐴 ) ) |
8 | 3 7 | mpdan | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( 𝐴 ↑m 𝐴 ) ) |