Metamath Proof Explorer


Theorem symgbasmap

Description: A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symgbasmap ( 𝐹𝐵𝐹 ∈ ( 𝐴m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 symgbasf ( 𝐹𝐵𝐹 : 𝐴𝐴 )
4 simpr ( ( 𝐹𝐵𝐹 : 𝐴𝐴 ) → 𝐹 : 𝐴𝐴 )
5 dmfex ( ( 𝐹𝐵𝐹 : 𝐴𝐴 ) → 𝐴 ∈ V )
6 5 5 elmapd ( ( 𝐹𝐵𝐹 : 𝐴𝐴 ) → ( 𝐹 ∈ ( 𝐴m 𝐴 ) ↔ 𝐹 : 𝐴𝐴 ) )
7 4 6 mpbird ( ( 𝐹𝐵𝐹 : 𝐴𝐴 ) → 𝐹 ∈ ( 𝐴m 𝐴 ) )
8 3 7 mpdan ( 𝐹𝐵𝐹 ∈ ( 𝐴m 𝐴 ) )