Step |
Hyp |
Ref |
Expression |
1 |
|
symgov.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgov.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
symgov.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
1 2 3
|
symgov |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
5 |
1 2
|
symgbasf1o |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) |
6 |
1 2
|
symgbasf1o |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) |
7 |
|
f1oco |
⊢ ( ( 𝑋 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) |
9 |
|
coexg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ V ) |
10 |
1 2
|
elsymgbas2 |
⊢ ( ( 𝑋 ∘ 𝑌 ) ∈ V → ( ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ↔ ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ↔ ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
12 |
8 11
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ) |
13 |
4 12
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |