Metamath Proof Explorer


Theorem symgextf1o

Description: The extension of a permutation, fixing the additional element, is a bijection. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgext.s 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
symgext.e 𝐸 = ( 𝑥𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍𝑥 ) ) )
Assertion symgextf1o ( ( 𝐾𝑁𝑍𝑆 ) → 𝐸 : 𝑁1-1-onto𝑁 )

Proof

Step Hyp Ref Expression
1 symgext.s 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
2 symgext.e 𝐸 = ( 𝑥𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍𝑥 ) ) )
3 1 2 symgextf1 ( ( 𝐾𝑁𝑍𝑆 ) → 𝐸 : 𝑁1-1𝑁 )
4 1 2 symgextfo ( ( 𝐾𝑁𝑍𝑆 ) → 𝐸 : 𝑁onto𝑁 )
5 df-f1o ( 𝐸 : 𝑁1-1-onto𝑁 ↔ ( 𝐸 : 𝑁1-1𝑁𝐸 : 𝑁onto𝑁 ) )
6 3 4 5 sylanbrc ( ( 𝐾𝑁𝑍𝑆 ) → 𝐸 : 𝑁1-1-onto𝑁 )