Description: The extension of a permutation, fixing the additional element, is a bijection. (Contributed by AV, 7-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | ||
Assertion | symgextf1o | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
2 | symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | |
3 | 1 2 | symgextf1 | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1→ 𝑁 ) |
4 | 1 2 | symgextfo | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –onto→ 𝑁 ) |
5 | df-f1o | ⊢ ( 𝐸 : 𝑁 –1-1-onto→ 𝑁 ↔ ( 𝐸 : 𝑁 –1-1→ 𝑁 ∧ 𝐸 : 𝑁 –onto→ 𝑁 ) ) | |
6 | 3 4 5 | sylanbrc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |