| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgsssg.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
symgsssg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
eqidd |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝐺 ↾s { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) = ( 𝐺 ↾s { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) ) |
| 4 |
|
eqidd |
⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) ) |
| 5 |
|
eqidd |
⊢ ( 𝐷 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
| 6 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ⊆ 𝐵 |
| 7 |
6 2
|
sseqtri |
⊢ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ⊆ ( Base ‘ 𝐺 ) |
| 8 |
7
|
a1i |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ⊆ ( Base ‘ 𝐺 ) ) |
| 9 |
|
difeq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 ∖ I ) = ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 10 |
9
|
dmeqd |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → dom ( 𝑥 ∖ I ) = dom ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ dom ( ( 0g ‘ 𝐺 ) ∖ I ) ∈ Fin ) ) |
| 12 |
1
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 14 |
2 13
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 15 |
12 14
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 16 |
1
|
symgid |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 17 |
16
|
difeq1d |
⊢ ( 𝐷 ∈ 𝑉 → ( ( I ↾ 𝐷 ) ∖ I ) = ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 18 |
17
|
dmeqd |
⊢ ( 𝐷 ∈ 𝑉 → dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 19 |
|
resss |
⊢ ( I ↾ 𝐷 ) ⊆ I |
| 20 |
|
ssdif0 |
⊢ ( ( I ↾ 𝐷 ) ⊆ I ↔ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ ) |
| 21 |
19 20
|
mpbi |
⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 22 |
21
|
dmeqi |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅ |
| 23 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 24 |
22 23
|
eqtri |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 25 |
|
0fi |
⊢ ∅ ∈ Fin |
| 26 |
24 25
|
eqeltri |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) ∈ Fin |
| 27 |
18 26
|
eqeltrrdi |
⊢ ( 𝐷 ∈ 𝑉 → dom ( ( 0g ‘ 𝐺 ) ∖ I ) ∈ Fin ) |
| 28 |
11 15 27
|
elrabd |
⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 29 |
|
biid |
⊢ ( 𝐷 ∈ 𝑉 ↔ 𝐷 ∈ 𝑉 ) |
| 30 |
|
difeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ I ) = ( 𝑦 ∖ I ) ) |
| 31 |
30
|
dmeqd |
⊢ ( 𝑥 = 𝑦 → dom ( 𝑥 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 32 |
31
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ dom ( 𝑦 ∖ I ) ∈ Fin ) ) |
| 33 |
32
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) |
| 34 |
|
difeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∖ I ) = ( 𝑧 ∖ I ) ) |
| 35 |
34
|
dmeqd |
⊢ ( 𝑥 = 𝑧 → dom ( 𝑥 ∖ I ) = dom ( 𝑧 ∖ I ) ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ dom ( 𝑧 ∖ I ) ∈ Fin ) ) |
| 37 |
36
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) |
| 38 |
|
difeq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∖ I ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ) |
| 39 |
38
|
dmeqd |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → dom ( 𝑥 ∖ I ) = dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ∈ Fin ) ) |
| 41 |
12
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → 𝐺 ∈ Grp ) |
| 42 |
|
simp2l |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → 𝑦 ∈ 𝐵 ) |
| 43 |
|
simp3l |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → 𝑧 ∈ 𝐵 ) |
| 44 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 45 |
2 44
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 46 |
41 42 43 45
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 47 |
1 2 44
|
symgov |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 48 |
42 43 47
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 49 |
48
|
difeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) = ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ) |
| 50 |
49
|
dmeqd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) = dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ) |
| 51 |
|
simp2r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → dom ( 𝑦 ∖ I ) ∈ Fin ) |
| 52 |
|
simp3r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → dom ( 𝑧 ∖ I ) ∈ Fin ) |
| 53 |
|
unfi |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) → ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) ∈ Fin ) |
| 54 |
51 52 53
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) ∈ Fin ) |
| 55 |
|
mvdco |
⊢ dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ⊆ ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) |
| 56 |
|
ssfi |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) ∈ Fin ∧ dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ⊆ ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) ) → dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ∈ Fin ) |
| 57 |
54 55 56
|
sylancl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ∈ Fin ) |
| 58 |
50 57
|
eqeltrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ∈ Fin ) |
| 59 |
40 46 58
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ∈ Fin ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 60 |
29 33 37 59
|
syl3anb |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 61 |
|
difeq1 |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑥 ∖ I ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ) |
| 62 |
61
|
dmeqd |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → dom ( 𝑥 ∖ I ) = dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ∈ Fin ) ) |
| 64 |
|
simprl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → 𝑦 ∈ 𝐵 ) |
| 65 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 66 |
2 65
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 67 |
12 64 66
|
syl2an2r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 68 |
1 2 65
|
symginv |
⊢ ( 𝑦 ∈ 𝐵 → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ◡ 𝑦 ) |
| 69 |
68
|
ad2antrl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ◡ 𝑦 ) |
| 70 |
69
|
difeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = ( ◡ 𝑦 ∖ I ) ) |
| 71 |
70
|
dmeqd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = dom ( ◡ 𝑦 ∖ I ) ) |
| 72 |
1 2
|
symgbasf1o |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 73 |
72
|
ad2antrl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 74 |
|
f1omvdcnv |
⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → dom ( ◡ 𝑦 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → dom ( ◡ 𝑦 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 76 |
71 75
|
eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 77 |
|
simprr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → dom ( 𝑦 ∖ I ) ∈ Fin ) |
| 78 |
76 77
|
eqeltrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ∈ Fin ) |
| 79 |
63 67 78
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ∈ Fin ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 80 |
33 79
|
sylan2b |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 81 |
3 4 5 8 28 60 80 12
|
issubgrpd2 |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) ) |