Metamath Proof Explorer


Theorem symgfixelq

Description: A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
symgfixf.q 𝑄 = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
Assertion symgfixelq ( 𝐹𝑉 → ( 𝐹𝑄 ↔ ( 𝐹 : 𝑁1-1-onto𝑁 ∧ ( 𝐹𝐾 ) = 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 symgfixf.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 symgfixf.q 𝑄 = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
3 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝐾 ) = ( 𝐹𝐾 ) )
4 3 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝐾 ) = 𝐾 ↔ ( 𝐹𝐾 ) = 𝐾 ) )
5 fveq1 ( 𝑞 = 𝑓 → ( 𝑞𝐾 ) = ( 𝑓𝐾 ) )
6 5 eqeq1d ( 𝑞 = 𝑓 → ( ( 𝑞𝐾 ) = 𝐾 ↔ ( 𝑓𝐾 ) = 𝐾 ) )
7 6 cbvrabv { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } = { 𝑓𝑃 ∣ ( 𝑓𝐾 ) = 𝐾 }
8 2 7 eqtri 𝑄 = { 𝑓𝑃 ∣ ( 𝑓𝐾 ) = 𝐾 }
9 4 8 elrab2 ( 𝐹𝑄 ↔ ( 𝐹𝑃 ∧ ( 𝐹𝐾 ) = 𝐾 ) )
10 eqid ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 )
11 10 1 elsymgbas2 ( 𝐹𝑉 → ( 𝐹𝑃𝐹 : 𝑁1-1-onto𝑁 ) )
12 11 anbi1d ( 𝐹𝑉 → ( ( 𝐹𝑃 ∧ ( 𝐹𝐾 ) = 𝐾 ) ↔ ( 𝐹 : 𝑁1-1-onto𝑁 ∧ ( 𝐹𝐾 ) = 𝐾 ) ) )
13 9 12 syl5bb ( 𝐹𝑉 → ( 𝐹𝑄 ↔ ( 𝐹 : 𝑁1-1-onto𝑁 ∧ ( 𝐹𝐾 ) = 𝐾 ) ) )