Step |
Hyp |
Ref |
Expression |
1 |
|
symgfixf.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
symgfixf.q |
⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } |
3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝐾 ) = ( 𝐹 ‘ 𝐾 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝐾 ) = 𝐾 ↔ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) |
5 |
|
fveq1 |
⊢ ( 𝑞 = 𝑓 → ( 𝑞 ‘ 𝐾 ) = ( 𝑓 ‘ 𝐾 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑞 = 𝑓 → ( ( 𝑞 ‘ 𝐾 ) = 𝐾 ↔ ( 𝑓 ‘ 𝐾 ) = 𝐾 ) ) |
7 |
6
|
cbvrabv |
⊢ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } = { 𝑓 ∈ 𝑃 ∣ ( 𝑓 ‘ 𝐾 ) = 𝐾 } |
8 |
2 7
|
eqtri |
⊢ 𝑄 = { 𝑓 ∈ 𝑃 ∣ ( 𝑓 ‘ 𝐾 ) = 𝐾 } |
9 |
4 8
|
elrab2 |
⊢ ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) |
10 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
11 |
10 1
|
elsymgbas2 |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝑃 ↔ 𝐹 : 𝑁 –1-1-onto→ 𝑁 ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ∈ 𝑃 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |
13 |
9 12
|
syl5bb |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |